heterojunction solar cells9 because of its absorption
properties, high mobilities, and excellent photovoltaic
performance. However, the electron-accepting properties
of BTD are only moderate, and more electron-deficient
building blocks would enable access to LUMO tuning that
could be incorporated into Donor-Acceptor (D-A)
polymers. Lowering of the LUMO level through modifi-
cation of the acceptor component in these D-A copoly-
mers will enable improved light-harvesting characteristics,
and adding fused aromatics should lead to a higher degree
of crystallinity in the eventual polymer, which could
provide superior charge-transport properties.
toluene. Heterocycles 2a,b are further reduced with PPh3
in CCl4 to give thiadiazoles 3a,b or, alternatively,
10
oxidized with peroxy acid to give thiadiazole dioxides
4a,b.10b,11 Note that others have synthesized thiadiazole12
and thiadiazole dioxide13 heterocycles using different ap-
proaches. The advantage of the present method is that it
provides easy synthetic access to each oxidation state of the
thiadiazole, which is essential if tuning of the reduction
potential for a specific material application is needed. All
heterocycles were characterized by NMR, EA, MS, and
X-ray crystallography (see Supporting Information).
The molecular structure of 2a in the solid state has been
previously reported,14 and the structures of the remaining
compounds are reported here. The heterocyclic rings of 2
show slight deviations from planarity, whereas the het-
erocyclic rings of both 3 and 4 are coplanar to the aromatic
carbon backbone. Thiadiazole oxides 2 and 4 show solid-
state C-N-S-O dihedral angles between 113° and 128°,
and each compound shows similar heterocyclic ring bond
lengths. The heterocyclic C-N bond distances for 2-4
are ∼1.3 Å, which is consistent with C-N double bond
character. Both the C1-C2 and N-S bond lengths are
consistent with single bonds resulting in a structure that
is more accurately described as a diimine. Crystal packing
diagrams of all compounds are included in the Supporting
Information. Compounds 2-4 stack into columns with
overlapping π-systems. Heterocycles 3 pack into parallel
stacks with heterocyclic rings overlapping, as opposed to
2 and 4, which form antiparallel π-stacks, most likely
because of dipole-dipole interactions. Intermolecular
interactions for the oxides are supported by decomposition
temperatures of 316 °C for 4b compared to 200 °C for
3b.
In this contribution, we explore two effects on the
thiadiazole heterocycle: first, the consequence of changing
the fused phenyl ring in BTD to either a phenanthrene or
pyrene backbone and second, changing the oxidation state
of the sulfur in the thiadiazole heterocycle from S(II) via
S(IV) to S(VI).
The synthesis of six thiadiazoles begins with the
phenanthryl and pyrenyl bis-imines 1a,b (Scheme 1) that
Scheme 1. Synthesis of Thiadiazole Heterocycles
(7) (a) Bauer, P.; Wietasch, H.; Lindner, S. M.; Thelakkat, M. Chem.
Mater. 2007, 19, 88–94. (b) Fischer, M. K. R.; Kaiser, T. E.; Wu¨rthner, F.;
Ba¨uerle, P. J. Mater. Chem. 2009, 19, 1129–1141. (c) Neuteboom, E. E.;
van Hal, P. A.; Janssen, R. A. J. Chem.sEur. J. 2004, 10, 3907–3918. (d)
Zhang, J.; Hoeben, F. J. M.; Pouderoijen, M. J.; Schenning, A. P. H.; Meijer,
E. W.; Schryver, F. C.; De Feyter, S. Chem.sEur. J. 2006, 12, 9046–9055.
(8) (a) Gilot, J.; Wienk, M. M.; Janssen, R. A. J. AdV. Mater. 2010, 22,
E67-E71. (b) Ma, C.-Q.; Fonrodona, M.; Schikora, M. C.; Wienk, M. M.;
Janssen, R. A. J.; Ba¨uerle, P. AdV. Funct. Mater. 2008, 18, 3323–3331. (c)
Muller, J. G.; Lupton, J. M.; Feldmann, J.; Lemmer, U.; Scharber, M. C.;
Sariciftci, N. S.; Brabec, C. J.; Scherf, U. Phys. ReV. B: Condens. Matter
Mater. Phys. 2005, 72, 195208/195201–195208/195210.
are accessible from the corresponding R-diketones. Each
bis-imine was cleanly converted to the thiadiazole oxide
heterocycle, 2a,b, by addition of thionyl chloride in
(9) (a) Biniek, L.; Chochos, C. L.; Hadziioannou, G.; Leclerc, N.;
Leveque, P.; Heiser, T. Macromol. Rapid Commun. 2010, 31, 651–656.
(b) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C. Nat. Chem. 2009, 1,
657–661. (c) Koppe, M.; Egelhaaf, H.-J.; Dennler, G.; Scharber, M. C.;
Brabec, C. J.; Schilinsky, P.; Hoth, C. N. AdV. Funct. Mater. 2010, 20,
338–346.
(5) (a) Izuhara, D.; Swager, T. M. J. Am. Chem. Soc. 2009, 131, 17724–
17725. (b) Janietz, S.; Barche, J.; Wedel, A.; Sainova, D. Macromol. Chem.
Phys. 2004, 205, 187–198. (c) Moslin, R. M.; Andrew, T. L.; Kooi, S. E.;
Swager, T. M. J. Am. Chem. Soc. 2009, 131, 20–21. (d) Yasuda, T.; Sakai,
Y.; Aramaki, S.; Yamamoto, T. Chem. Mater. 2005, 17, 6060–6068.
(6) (a) Amb, C. M.; Beaujuge, P. M.; Reynolds, J. R. AdV. Mater. 2010,
22, 724–728. (b) Beaujuge, P. M.; Pisula, W.; Tsao Hoi, N.; Ellinger, S.;
Mu¨llen, K.; Reynolds, J. R. J. Am. Chem. Soc. 2009, 131, 7514–7515. (c)
Beaujuge, P. M.; Subbiah, J.; Choudhury, K. R.; Ellinger, S.; McCarley,
T. D.; So, F.; Reynolds, J. R. Chem. Mater. 2010, 22, 2093–2106. (d) Kim,
J.-S.; Lu, L.; Sreearunothai, P.; Seeley, A.; Yim, K.-H.; Petrozza, A.;
Murphy, C. E.; Beljonne, D.; Cornil, J.; Friend, R. H. J. Am. Chem. Soc.
2008, 130, 13120–13131. (e) Tsai, J.-H.; Lee, W.-Y.; Chen, W.-C.; Yu,
C.-Y.; Hwang, G.-W.; Ting, C. Chem. Mater. 2010, 22, 3290–3299. (f)
Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W. J., Jr.;
Tiwari, S. P.; Coppee, S.; Ellinger, S.; Barlow, S.; Bre´das, J.-L.; Kippelen,
B.; Reynolds, J. R.; Marder, S. R. J. Mater. Chem. 2010, 20, 123–134. (g)
Zhou, H.; Yang, L.; Xiao, S.; Liu, S.; You, W. Macromolecules 2010, 43,
811–820.
(10) (a) Biju, P.; Yu, Y. Tetrahedron Lett. 2007, 48, 5279–5282. (b)
Dunn, P. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1989, 2485–2487.
(11) Algieri, A. A.; Luke, G. M.; Standridge, R. T.; Brown, M.; Partyka,
R. A.; Crenshaw, R. R. J. Med. Chem. 1982, 25, 210–212.
(12) (a) Barton, D. H. R.; Bubb, W. A. J. Chem. Soc., Perkin Trans. 1
1977, 916–923. (b) Daley, S. T. A. K.; Rees, C. W. J. Chem. Soc., Perkin
Trans. 1 1987, 207–210. (c) Duan, X.-G.; Duan, X.-L.; Rees, C. W.; Yue,
T.-Y. J. Chem. Soc., Perkin Trans. 1 1997, 2597–2601. (d) Mataka, S.;
Takahashi, K.; Ishii, S.; Tashiro, M. J. Chem. Soc., Perkin Trans. 1 1979,
2905–2908.
(13) (a) Mirifico, M. V.; Caram, J. A.; Gennaro, A. M.; Cobos, C. J.;
Vasini, E. J. J. Phys. Org. Chem. 2009, 22, 964–970. (b) Svartman, E. L.;
Rozas, M. F.; Piro, O. E.; Castellano, E.; Mirifico, M. V. Synthesis 2006,
2313–2318. (c) Wright, J. B. J. Org. Chem. 1964, 29, 1905–1909.
(14) Arora, S. K. Acta Crystallogr., Sect. B: Struct. Sci. 1974, B30, 2923–
2925.
Org. Lett., Vol. 12, No. 20, 2010
4521