500 Letters in Organic Chemistry, 2010, Vol. 7, No. 6
Guo et al.
- 2+
for C98H112F12N6O9P2 [M-2PF6 ] /2 758.4245, found
REFERENCES
758.4265.
[1]
(a) de Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley,
A.J.M.; McCoy, C.P.; Rademacher, J.T.; Rice, T.E. Signaling
recognition events with fluorescent sensors and switches. Chem.
Rev., 1997, 97, 1515. (b) Martínez-Máñez, R.; Sancenón, F.
Fluorogenic and chromogenic chemosensors and reagents for
anions. Chem. Rev., 2003, 103, 4419. (c) Gale, P.A.; Garcia-
Garrido, S.E.; Garric, J. Anion receptors based on organic
frameworks: highlights from 2005 and 2006. Chem. Soc. Rev.,
2008, 37, 151. (d) Caltagirone, C.; Gale, P.A. Anion receptor
chemistry: highlights from 2007. Chem. Soc. Rev., 2009, 38, 520.
(a) Chellappan, K.; Singh, N.J.; Hwang, I.C.; Lee, J.W.; Kim, K.S.
A Calix[4]imidazolium[2]pyridine as an anion receptor. Angew.
Chem. Int. Ed., 2005, 44, 2899. (b) In, S.; Kang, J. Anion receptor
with four imidazolium rings on the glycoluril. Tetrahedron Lett.,
2005, 46, 7165. (c) Kim, H.; Kang, J. Iodide selective fluorescent
anion receptor with two methylene bridged bis-imidazolium rings
on naphthalene. Tetrahedron Lett., 2005, 46, 5443. (d) Ihm, H.;
Yun, S.; Kim, H.G.; Kim, J.K.; Kim, K.S. Tripodal nitro-
imidazolium receptor for anion binding driven by (C-H)+---X-
hydrogen bonds. Org. Lett., 2002, 4, 2897.
Experimental Procedure for 9
9 was prepared in the same way as 8 (yield 44%). mp >
1
300 °C; H NMR (400 MHz, CDCl3): ꢀ 0.87 (t, J = 8 Hz,
3H), 1.22-1.29 (m, 66H), 1.65-1.68 (m, 2H), 3.65 (s, 3H),
4.10 (t, J = 8.0 Hz, 2H), 5.21 (s, 4H), 6.81-6.84 (m, 10H),
6.90 (s, 2H), 7.05 (s, 2H), 7.20-7.24 (m, 8H), 7.60 (s, 2H),
8.16 (s, 2H), 8.22 (s, 2H); 13C NMR (100 MHz, CDCl3): ꢀ
14.2, 22.8, 27.2, 28.2, 29.4, 29.6, 29.7, 31.5, 32.0, 34.4, 34.5,
40.8, 45.6, 61.7, 119.4, 119.4, 119.8, 119.9, 120.3, 120.4,
121.3, 122.0, 122.8 ,126.7, 126.8, 129.6, 130.1, 131.4, 132.3,
133.0, 133.1, 137.7, 147.5, 152.9, 155.6, 155.9, 156.3, 163.4;
MS (ESI): calcd for C97H108N6O9 [M]+ 1501.82, found
1501.26.
[2]
[3]
[4]
Yoon, J.; Kim, S.K.; Singh, N.J.; Kim, K.S. Imidazolium receptors
for the recognition of anions. Chem. Soc. Rev., 2006, 35, 355.
(a) Kim, S.K.; Singh, N.J.; Kwon, J.; Hwang, I.C.; Park, S.J.; Kim,
K.S.; Yoon, J. Fluorescent imidazolium receptors for the
recognition of pyrophosphate. Tetrahedron, 2006, 62, 6065. (b)
Khatri, V.K.; Upreti, S.; Pandey, P.S. Novel bile acid-based cyclic
bisimidazolium receptors for anion recognition. Org. Lett., 2006, 8,
1755. (c) Singh, N.J.; Jun, E.J.; Chellappan, K.; Thangadurai, D.;
Chandran, R.P.; Hwang, I.C.; Yoon, J.; Kim, K.S. Quinoxaline-
imidazolium receptors for unique sensing of pyrophosphate and
acetate by charge transfer. Org. Lett., 2007, 9, 485. (d) Niu, H.T.;
Yin, Z.M.; Su, D.D.; Niu, D.; He, J.Q.; Cheng, J.P. Imidazolium-
based macrocycles as multisignaling chemosensors for anions.
Dalton Trans., 2008, 3694. (e) Willans, C.E.; Anderson, K.M.;
Experimental Procedure for PBI-2
PBI-2 was prepared in the same way as PBI-1 (yield
55%). mp: 267-269 °C. 1H NMR (400 MHz, CDCl3): ꢀ 0.87
(t, J = 8 Hz, 3H), 1.17-1.28 (m, 66H), 1.68 (s, 2H), 3.63 (s,
6H), 3.85 (s, 3H), 4.10 (s, 2H), 5.30 (s, 4H), 6.55-6.69 (m,
8H), 7.00-7.21 (m, 14H), 7.61(s, 2H), 7.98 (s, 4H), 8.52 (s,
2H); 13C NMR (100 MHz, CDCl3): ꢀ 14.2, 22.8, 27.3, 28.3,
29.5, 29.8, 29.8, 31.5, 32.0, 34.4, 34.5, 36.3, 40.8, 48.1, 62.8,
118.6, 119.2, 119.3, 119.5, 119.8, 120.0, 120.8, 120.9, 121.2,
122.3, 124.0, 126.5, 126.6, 128.9, 132.2, 132.5, 132.7, 133.0,
136.9, 147.0, 147.5, 152.4, 153.3, 154.7, 156.7, 157.0, 163.1,
Potts, L.C.; Steed, J.W. Allosteric effects in
a tetrapodal
imidazolium-derived calix[4]arene anion receptor. Org. Biomol.
Chem., 2009, 7, 2756. (f) Dinarès, I.; de Miguel, C.G.; Mesquida,
N.; Alcalde, E. Bis(imidazolium)-Calix[4]arene receptors for anion
binding. J. Org. Chem., 2009, 74, 482. (g) Xu, Z. C.; Singh, N.J.;
Lim, J.; Pan, J.; Kim, H.N.; Park, S.; Kim, K.S.; Yoon, J. Unique
sandwich stacking of pyrene-adenine-pyrene for selective and
ratiometric fluorescent sensing of ATP at physiological pH. J. Am.
Chem. Soc., 2009, 131, 15528.
-
163.4; HR-MS: m/z calcd for C99H114F12N6O9P2 [M-2PF6
]2+/2 765.9363, found 765.9356.
Experimental Procedure for PBI-3
PBI-3 was prepared in the same way as 8 (yield 50%).
mp > 300 °C. 1H NMR (400 MHz, CDCl3): ꢀ 0.87 (t, J =
8Hz, 3H), 1.23-1.29 (m, 66H), 1.65-1.69 (m, 2H), 4.10 (t, J
= 8Hz, 2H), 6.81-6.85 (m, 10H), 7.04 (s, 2H), 7.21-7.25 (m,
8H), 8.23 (s, 4H); 13C NMR (100 MHz, CDCl3): ꢀ 14.2,
22.8, 27.3, 28.3, 29.5, 29.8, 31.6, 31.6, 32.1, 34.5, 40.9,
116.5, 119.4, 119.5, 119.9, 120.0, 120.5, 121.1, 122.5, 122.8,
126.8, 129.2, 133.2, 147.5, 153.0, 156.1, 156.2, 156.3, 163.6,
164.1; HR-MS: m/z calcd for C88H98N2O9 [M+H]+
1327.7351, found 1327.7333.
[5]
(a) Cormode, D.P.; Murray, S.S.; Cowley, A.R.; Beer, P.D. Sulfate
selective anion recognition by a novel tetra-imidazolium zinc
metalloporphyrin receptor. Dalton Trans., 2006, 5135. (b) Khatri,
V.K.; Chahar, M.; Pavani, K.; Pandey, P.S. Bile acid-based cyclic
bisbenzimidazolium receptors for anion recognition: highly
improved receptors for fluoride and chloride ions. J. Org. Chem.,
2007, 72, 10224. (c) Kim, S.K.; Seo, D.; Han, S.J.; Son, G.; Lee,
I.J.; Lee, C.; Lee, K.D.; Yoon, J. A new imidazolium acridine
derivative as fluorescent chemosensor for pyrophosphate and
dihydrogen phosphate. Tetrahedron, 2008, 64, 6402.
(a) Ho, H.A.; Leclerc, M. New colorimetric and fluorometric
chemosensor based on a cationic polythiophene derivative for
iodide-specific detection. J. Am. Chem. Soc., 2003, 125, 4412. (b)
Kumar, S.; Luxami, V.; Kumar, A. Chromofluorescent probes for
selective detection of fluoride and acetate ions. Org. Lett., 2008,
10, 5549. (c) Lu, Q.S.; Dong, L.; Zhang, J.; Li, J.; Jiang, L.; Huang,
Y.; Qin, S.; Hu, C.W.; Yu, X.Q. Imidazolium-functionalized
BINOL as a multifunctional receptor for chromogenic and chiral
anion recognition. Org. Lett., 2009, 11, 669. (d) Mashraqui, S.H.;
Betkar, R.; Chandiramani, M.; Quinonero, D.; Frontera, A. A novel
fluoride selective optical chemosensor based on internal charge
transfer signaling. Tetrahedron Lett., 2010, 51, 596.
[6]
ACKNOWLEDGEMENTS
This work was supported by grants from the National
Natural Science Foundation of China (Grant Nos. 20872101
& 20702035). We thank the Centre of Testing & Analysis,
Sichuan University for NMR measurements.
[7]
(a) Boiocchi, M.; Boca, L.D.; Gomez, D.E.; Fabbrizzi, L.;
Licchelli, M.; Monzani, E. Nature of urea-fluoride interaction:
incipient and definitive proton transfer. J. Am. Chem. Soc., 2004,
126, 16507. (b) Cho, E.J.; Ryu, B.J.; Lee, Y.J.; Nam, K.C. Visible
colorimetric fluoride ion sensors. Org. Lett., 2005, 7, 2607. (c)
Thangadurai, T.D.; Singh, N.J.; Hwang, I.C.; Lee, J.W.;
Chandaran, R.P.; Kim, K.S. 2-Dimensional analytic approach for
anion differentiation with chromofluorogenic receptors. J. Org.
Chem., 2007, 72, 5461. (d) Yeo, H.M.; Ryu, B.J.; Nam, K.C. A
novel fluoride ion colorimetric chemosensor. Org. Lett., 2008, 10,
SUPPLEMENTARY MATERIAL
Supplementary material is available on the publishers
Web site along with the published article.
Graph for anions induced color change and fluorescence
titrations of sensors PBI-1 and PBI-2 are available.