Article
Organometallics, Vol. 29, No. 23, 2010 6187
two-electron-donor ligands, forming neutral linear two-
coordinate complexes. However, the steric bulk associated
with the phosphine and carbene ligands can prevent close
contacts between adjacent Au(I) ions. Replacement of these
bulky ligands with aromatic pyridinyl donor groups should
lead to the formation of neutral planar pyridyl gold(I)
alkynyl complexes such as 1a. These pyridyl gold(I) alkynyl
complexes could potentially be useful building blocks for the
synthesis of nanoscale materials. The lack of steric hindrance
around the Au(I) center should enable the two aromatic
Figure 1. (a) Space-filling molecular model of 1a. (b) Space-
filling representation of a potential stacking arrangement of 1a
stabilized by Au-Au and π-π interactions.
(4) (a) Frischmann, P. D.; Guieu, S.; Tabeshi, R.; MacLachlan, M. J.
J. Am. Chem. Soc. 2010, 132 (22), 7668–7675. (b) Camerel, F.; Ziessel,
R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.;
Bucher, J.-P. Angew. Chem., Int. Ed. 2007, 46 (15), 2659–2662. (c) Clark,
M. L.; Diring, S.; Retailleau, P.; McMillin, D. R.; Ziessel, R. Chem. Eur.
J. 2008, 14 (24), 7168–7179. (d) Tam, A. Y.-Y.; Wong, K. M.-C.; Wang,
G.; Yam, V. W.-W. Chem. Commun. 2007, 20, 2028–2030. (e) Tam,
A. Y.-Y.; Wong, K. M.-C.; Yam, V. W.-W. Chem.;Eur. J. 2009, 15 (19),
4775–4778. (f) Tam, A. Y.-Y.; Wong, K. M.-C.; Yam, V. W.-W. J. Am.
Chem. Soc. 2009, 131 (17), 6253–6260. (g) Kozhevnikov, V. N.; Donnio,
B.; Bruce, D. W. Angew. Chem., Int. Ed. 2008, 47 (33), 6286–6289.
(h) Santoro, A.; Whitwood, A. C.; Williams, J. A. G.; Kozhevnikov, V. N.;
Bruce, D. W. Chem. Mater. 2009, 21 (16), 3871–3882. (i) Cardolaccia, T.;
Li, Y.; Schanze, K. S. J. Am. Chem. Soc. 2008, 130 (8), 2535–2545.
(j) Damm, C.; Israel, G.; Hegmann, T.; Tschierske, C. J. Mater. Chem.
2006, 16 (19), 1808–1816.
(5) (a) Hutchings, G. J.; Brust, M.; Schmidbaur, H. Chem. Soc. Rev.
2008, 37 (9), 1759–1765. (b) Laguna, A., Ed. Modern Supramolecular
Gold Chemistry: Gold-Metal Interactions And Applications; Wiley: New
York, 2008; 505 pp. (c) Puddephatt, R. J. Chem. Soc. Rev. 2008, 37 (9),
2012–2027. (d) Schmidbaur, H. Gold Bull. 2000, 33 (1), 3–10. (e) Schmidbaur,
H. Nature 2001, 413 (6851), 31–33. (f) Schmidbaur, H.; Schier, A. Chem.
Soc. Rev. 2008, 37 (9), 1931–1951.
ligands to adopt a coplanar conformation, which would
allow these organometallic fragments to assemble, through
a combination of π-π and Au(I)-Au(I) interactions, into
linear supramolecular stacks (Figure 1). Recent literature
provides support for this postulate: Lin et al. have demon-
strated that the planar pyridine containing gold(I) cations
[Au(py)2]þ 7 and [(py)Au(carbene)]þ 8 form linear stacks in
the solid state, while Laguna et al. have shown that neutral
[(py)Au(C6Cl5)]9 complexes behave in an analogous manner.
We have a longstanding interest in metal-metal interactions10
and have been exploring ways to exploit them to construct
nanoscale materials. As part of that work, we report here the
synthesis, properties, and structural characterization of pyridyl
gold(I) alkynyl complexes. Additionally, density functional
theory (DFT) calculations have been carried out in order
to explain the observed thermodynamic and spectroscopic
properties.
(6) (a) Hogarth, G.; Alvarez-Falcon, M. M. Inorg. Chim. Acta 2005,
358 (5), 1386–1392. (b) Hunks, W. J.; MacDonald, M.-A.; Jennings,
M. C.; Puddephatt, R. J. Organometallics 2000, 19 (24), 5063–5070.
(c) Partyka, D. V.; Gao, L.; Teets, T. S.; Updegraff, J. B.; Deligonul, N.;
Gray, T. G. Organometallics 2009, 28 (21), 6171–6182. (d) Partyka,
D. V.; Updegraff, J. B., III; Zeller, M.; Hunter, A. D.; Gray, T. G.
Organometallics 2007, 26 (1), 183–186. (e) Schuster, O.; Liau, R.-Y.;
Schier, A.; Schmidbaur, H. Inorg. Chim. Acta 2005, 358 (5), 1429–1441.
(f) Yip, S.-K.; Lam, W. H.; Zhu, N.; Yam, V. W.-W. Inorg. Chim. Acta
2006, 359 (11), 3639–3648. (g) Habermehl, N. C.; Eisler, D. J.; Kirby,
C. W.; Yue, N. L. S.; Puddephatt, R. J. Organometallics 2006, 25 (12),
2921–2928. (h) Habermehl, N. C.; Jennings, M. C.; McArdle, C. P.;
Mohr, F.; Puddephatt, R. J. Organometallics 2005, 24 (21), 5004–5014.
(i) Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Z. Naturforsch., B:
Chem. Sci. 2004, 59 (11/12), 1488–1496. (j) Hunks, W. J.; Lapierre, J.;
Jenkins, H. A.; Puddephatt, R. J. Dalton Trans. 2002, No. 14, 2885–2889.
(k) Irwin, M. J.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1997, 16 (15),
3541–3547. (l) Jia, G.; Payne, N. C.; Vittal, J. J.; Puddephatt, R. J.
Organometallics 1993, 12 (12), 4771–8. (m) Jia, G.; Puddephatt, R. J.;
Scott, J. D.; Vittal, J. J. Organometallics 1993, 12 (9), 3565–74. (n) Jia,
G.; Puddephatt, R. J.; Vittal, J. J. J. Organomet. Chem. 1993, 449 (1-2),
211–17. (o) Jia, G.; Puddephatt, R. J.; Vittal, J. J.; Payne, N. C.
Organometallics 1993, 12 (2), 263–5. (p) McArdle, C. P.; Irwin, M. J.;
Jennings, M. C.; Puddephatt, R. J. Angew. Chem., Int. Ed. 1999, 38 (22),
3376–3378. (q) McArdle, C. P.; Irwin, M. J.; Jennings, M. C.; Vittal, J. J.;
Puddephatt, R. J. Chem. Eur. J. 2002, 8 (3), 723–734. (r) McArdle, C. P.;
Jennings, M. C.; Vittal, J. J.; Puddephatt, R. J. Chem. Eur. J. 2001, 7 (16),
3572–3583. (s) McArdle, C. P.; Van, S.; Jennings, M. C.; Puddephatt,
R. J. J. Am. Chem. Soc. 2002, 124 (15), 3959–3965. (t) McArdle, C. P.;
Vittal, J. J.; Puddephatt, R. J. Angew. Chem., Int. Ed. 2000, 39 (21),
3819–3822. (u) Mohr, F.; Eisler, D. J.; McArdle, C. P.; Atieh, K.;
Jennings, M. C.; Puddephatt, R. J. J. Organomet. Chem. 2003, 670
(1-2), 27–36. (v) Mohr, F.; Jennings, M. C.; Puddephatt, R. J. Eur. J.
Inorg. Chem. 2003, No. 2, 217–223. (w) Mohr, F.; Jennings, M. C.;
Puddephatt, R. J. Angew. Chem., Int. Ed. 2004, 43 (8), 969–971. (x) Payne,
N. C.; Ramachandran, R.; Puddephatt, R. J. Can. J. Chem. 1995, 73 (1),
6–11. (y) Qin, Z.; Jennings, M. C.; Puddephatt, R. J. Chem. Eur. J. 2002,
8 (3), 735–738. (z) Bruce, M. I.; Horn, E.; Matisons, J. G.; Snow, M. R.
Aust. J. Chem. 1984, 37, 1163–1170. (aa) Bruce, M. I.; Hall, B. C.; Skelton,
B. W.; Smith, M. E.; White, A. H. Dalton Trans. 2002, No. 6, 995–1001.
(ab) Bruce, M. I.; Jevric, M.; Skelton, B. W.; Smith, M. E.; White, A. H.;
Zaitseva, N. N. J. Organomet. Chem. 2006, 691 (3), 361–370. (ac) Khairul,
W. M.; Fox, M. A.; Zaitseva, N. N.; Gaudio, M.; Yufit, D. S.; Skelton,
B. W.; White, A. H.; Howard, J. A. K.; Bruce, M. I.; Low, P. J. Dalton
Trans. 2009, No. 4, 610–620.
Experimental Section
General Considerations. Ethynylbenzene, ethynylferrocene,
AuCl(SMe2), 4-(dimethylamino)pyridine (4-dmap), and 4-ami-
nopyridine (4-NH2Py) were purchased from commercial sources
(Aldrich) and were used as received. NEt3 was distilled over
KOH prior to use. Petrol refers to the fraction of petroleum ether
boiling in the range 40-60 °C. The compounds [(4-dmap)2Au]-
[AuCl2], [(4-NH2Py)2Au][AuCl2], [(4-pic)2Au][AuCl2], and
[(py)2Au][AuCl2] were synthesized by literature procedures.7
As a precautionary measure, all reactions were carried out in
the absence of light. NMR experiments were carried out on
either a Varian 400-MR or a Varian 500 MHz VNMRS spectro-
meter operating at 298 K with chemical shifts referenced to
1
residual solvent peaks (CDCl3, H 7.26 ppm, 13C 77.16 ppm;
CD3CN, 1H 1.94 ppm, 13C 1.32, 118.26 ppm; d6-DMSO, 1H 2.50
ppm). Chemical shifts are reported in parts per million (ppm)
and coupling constants (J) in hertz (Hz). Standard abbreviations
indicating multiplicity were used as follows: m = multiplet, t =
triplet, d = doublet, s = singlet, b = broad. ESI-MS analysis
was carried out on methanol/dichloromethane solutions of the
compound on a Bruker MicroTOF-Q spectrometer and IR
(7) Lin, J. C. Y.; Tang, S. S.; Vasam, C. S.; You, W. C.; Ho, T. W.;
Huang, C. H.; Sun, B. J.; Huang, C. Y.; Lee, C. S.; Hwang, W. S.; Chang,
A. H. H.; Lin, I. J. B. Inorg. Chem. 2008, 47 (7), 2543–2551.
(8) Chiou, J. Y. Z.; Luo, S. C.; You, W. C.; Bhattacharyya, A.;
Vasam, C. S.; Huang, C. H.; Lin, I. J. B. Eur. J. Inorg. Chem. 2009, No.
13, 1950–1959.
(9) Fernandez, E. J.; Laguna, A.; Lopez-de-Luzuriaga, J. M.; Monge,
M.; Montiel, M.; Olmos, M. E.; Perez, J.; Rodriguez-Castillo, M. Gold
Bull. 2007, 40 (3), 172–183.
(10) (a) Crowley, J. D.; Bosnich, B. Eur. J. Inorg. Chem. 2005, No. 11,
2015–2025. (b) Crowley, J. D.; Goshe, A. J.; Bosnich, B. Chem. Commun.
2003, No. 3, 392–393. (c) Crowley, J. D.; Goshe, A. J.; Steele, I. M.; Bosnich,
B. Chem. Eur. J. 2004, 10 (8), 1944–1955. (d) Crowley, J. D.; Steele, I. M.;
Bosnich, B. Inorg. Chem. 2005, 44 (9), 2989–2991. (e) Crowley, J. D.;
Steele, I. M.; Bosnich, B. Eur. J. Inorg. Chem. 2005, No. 19, 3907–3917.