2242
S. B. Tan et al.
LETTER
J. Org. Chem. 1997, 62, 564. (f) Buhr, S.; Griesbeck, A. G.;
Lex, J. Tetrahedron Lett. 1996, 37, 1195.
(3) (a) Hu, S.; Neckers, D. C. J. Photochem. Photobiol. A:
Chem. 1998, 114, 103. (b) Fujisawa, T.; Monroe, B. M.;
Hammond, G. S. J. Am. Chem. Soc. 1970, 92, 542.
(c) Huyser, E. S.; Neckers, D. C. J. Org. Chem. 1964, 29,
276.
O–
R3
R3
3
PETs
R2
R2
*
+
1, 2
+
Ph
CO2R1
S
•
CO2
–
–
•
S
CO2
+
3, 8
– CO2
+ H+, x 2
O–
R3
R2
(4) (a) Hu, S.; Neckers, D. C. J. Org. Chem. 1997, 62, 7827.
(b) Hu, S.; Neckers, D. C. J. Org. Chem. 1997, 62, 6820.
(c) Hu, S.; Neckers, D. C. Tetrahedron 1997, 53, 7165.
(d) Hu, S.; Neckers, D. C. Tetrahedron 1997, 53, 2751.
(5) (a) Lavy, T.; Sheynin, Y.; Sparkes, H. A.; Howard, J. A. K.;
Kaftory, M. Cryst. Eng. Comm. 2008, 10, 734.
S
OR1
HO
CO2R1
•
Ph
•
R2
6, 7
S
R3
+ H+
O
4, 5, 9, 10
Scheme 4 Mechanistic scenario
(b) Griesbeck, A. G.; Heckroth, H. Synlett 2002, 131.
(c) Zehavi, U. J. Org. Chem. 1977, 42, 2821.
(6) (a) Gallagher, S.; Hatoum, F.; Zientek, N.; Oelgemöller, M.
Tetrahedron Lett. 2010, 51, 3639. (b) Hatoum, F.;
Gallagher, S.; Oelgemöller, M. Tetrahedron Lett. 2009, 50,
6593. (c) Hatoum, F.; Gallagher, S.; Baragwanath, L.; Lex,
J.; Oelgemöller, M. Tetrahedron Lett. 2009, 50, 6335.
(d) Kim, A. R.; Lee, K.-S.; Lee, C.-W.; Yoo, D. J.; Hatoum,
F.; Oelgemöller, M. Tetrahedron Lett. 2005, 46, 3395.
(e) Oelgemöller, M.; Cygon, P.; Lex, J.; Griesbeck, A. G.
Heterocycles 2003, 59, 669. (f) Griesbeck, A. G.;
Oelgemöller, M.; Lex, J. Synlett 2000, 1455. (g) Griesbeck,
A. G.; Oelgemöller, M. Synlett 2000, 71. (h) Griesbeck,
A. G.; Gudipati, M. S.; Hirt, J.; Lex, J.; Oelgemöller, M.;
Schmickler, H.; Schouren, F. J. Org. Chem. 2000, 65, 7151.
(i) Griesbeck, A. G.; Oelgemöller, M. Synlett 1999, 492.
(j) Belluau, V.; Noeureuil, P.; Ratzke, E.; Skvortsov, A.;
Gallagher, S.; Motti, C. A.; Oelgemöller, M. Tetrahedron
Lett. 2010, 51, 4738.
metrically substituted thioethers commonly give mixtures
of regioisomers.17
In conclusion, a-thioalkyl-substituted carboxylates under-
go photodecarboxylative addition to alkyl phenylglyoxy-
lates. Conversion rates, isolated yields and selectivities
were higher compared to reactions with simple thioethers.
The easy procedure was suitable for adaptation in ‘micro-
photochemistry’.
Acknowledgment
This research project was financially supported by Science Found-
ation Ireland (SFI, 07/RFP/CHEF817 and 06/RFP/CHO028), the
Environmental Protection Agency (EPA, 2008-ET-MS-2-S2) and
the Department of Environment, Heritage and Local Government
(DEHLG, 2008-S-ET-2). The authors would like to thank Dr. An-
dreas Freitag (mikroglas chemtech) for technical advice and sup-
port.
(7) (a) Griesbeck, A. G.; Maptue, N.; Bondock, S.; Oelgemöller,
M. Photochem. Photobiol. Sci. 2003, 2, 450. (b) Griesbeck,
A. G.; Kramer, W.; Oelgemöller, M. Green Chem. 1999, 1,
205.
(8) General Procedure for Irradiation
The alkyl phenylglyoxylate (1.5 mmol) was dissolved in
MeCN (50 mL). A solution of the potassium carboxylate
(4.5 mmol) in H2O (50 mL) was added, and the mixture was
irradiated (Rayonet Photochemical Reactor RPR-200;
l = 350 30 nm) at 15–20 °C in a Pyrex tube (l ≥ 300 nm)
while purging with a slow stream of nitrogen. The progress
of the reaction was monitored by TLC analysis or by passing
the departing gas stream through a sat. Ba(OH)2 solution
until precipitation of BaCO3 had ceased. Most of the MeCN
was evaporated, and the remaining solution was extracted
with EtOAc (4 × 25 mL). The combined organic layers were
washed with 5% NaHCO3 (1 × 25 mL) and brine (1 × 25
mL), dried over MgSO4, and evaporated. The products
were purified by flash column chromatography (eluent:
n-hexane–EtOAc = 5:1).
References and Notes
(1) (a) Merzlikine, A. G.; Voskresensky, S. V.; Danilov, E. O.;
Neckers, D. C.; Fedorov, A. V. Photochem. Photobiol. Sci.
2007, 6, 608. (b) Merzlikine, A. G.; Voskresensky, S. V.;
Danilov, E. O.; Fedorov, A. V.; Rodgers, M. A. J.; Neckers,
D. C. Photochem. Photobiol. Sci. 2004, 3, 892. (c)Fedorov,
A. V.; Danilov, E. O.; Merzlikine, A. G.; Rodgers, M. A. J.;
Neckers, D. C. J. Phys. Chem. A 2003, 107, 3208.
(d) Merzlikine, A. G.; Voskresensky, S. V.; Danilov, E. O.;
Rodgers, M. A. J.; Neckers, D. C. J. Am. Chem. Soc. 2002,
124, 14532. (e) Fedorov, A. V.; Danilov, E. O.; Rodgers,
M. A. J.; Neckers, D. C. J. Am. Chem. Soc. 2001, 123, 5136.
(f) Hu, S.; Wu, X.; Neckers, D. C. Macromol. 2000, 33,
4030. (g) Hu, S.; Neckers, D. C. J. Photochem. Photobiol. A:
Chem. 1998, 118, 75. (h) Hu, S.; Neckers, D. C. J. Mater.
Chem. 1997, 7, 1737. (i) Hu, S.; Neckers, D. C. J. Org.
Chem. 1997, 62, 755. (j) Hu, S.; Neckers, D. C. J. Org.
Chem. 1996, 61, 6407. (k) Encinas, M. V.; Lissi, E. A.;
Zanocco, A.; Steward, L. C.; Scaiano, J. C. Can. J. Chem.
1984, 62, 386. (l) Pappas, S. P.; Alexander, J. E.; Zehr, R. D.
J. Am. Chem. Soc. 1970, 92, 6927. (m) Leermakers, P. A.;
Warren, P. C.; Vesley, G. F. J. Am. Chem. Soc. 1964, 86,
1768.
Selected Physical and Spectral Data for the Product
Methyl-2-(1,3-dithian-2-yl)-2-hydroxy-2-phenylacetate
(4e)
Yellowish solid, mp 104–106 °C. Rf = 0.39 (SiO2, n-hexane–
EtOAc = 5:1). 1H NMR (400 MHz, acetone-d6): d = 1.84 (m,
2 H, CH2), 2.40–2.46 (m, 1 H, SCH2), 2.56–2.62 (m, 1 H,
SCH2), 3.02–3.09 (m, 1 H, SCH2), 3.19–3.26 (m, 1 H,
SCH2), 3.61 (s, 3 H, OCH3), 4.48 (s, 1 H, CH), 5.14 (s, 1 H,
OH), 7.14–7.24 (br m, 3 H, Harom), 7.56 (dd, 3J = 8.4 Hz,
4J = 1.6 Hz, 2 H, Harom) ppm. 13C NMR (100 MHz, CDCl3):
d = 25.1 (t, 1 C, CH2), 28.0 (t, 1 C, SCH2), 28.3 (t, 1 C,
SCH2), 50.4 (d, 1 C, CH), 53.9 (q, 1 C, OCH3), 85.1 (s, 1 C,
COH), 126.0 (d, 2 C, CHarom), 128.3 (d, 1 C, CHarom), 128.4
(d, 2 C, CHarom), 139.1 (s, 1 C, Cqarom), 173.8 (s, 1 C, C=O)
ppm. IR (KBr): n = 3490, 2953, 2925, 2892, 1725, 1239,
(2) (a) D’Auria, M.; Emanuele, L.; Racioppi, R. Lett. Org.
Chem. 2008, 5, 249. (b) D’Auria, M.; Emanuele, L.;
Racioppi, R. Tetrahedron Lett. 2004, 45, 3877. (c)D’Auria,
M.; Emanuele, L.; Racioppi, R. Photochem. Photobiol. Sci.
2003, 2, 904. (d) Hu, S.; Neckers, D. C. J. Chem. Soc.,
Perkin Trans. 2 1999, 1771. (e) Hu, S.; Neckers, D. C.
Synlett 2010, No. 15, 2240–2243 © Thieme Stuttgart · New York