Published on Web 11/16/2010
Highly Enantioselective Rh2(S-DOSP)4-Catalyzed
Cyclopropenation of Alkynes with Styryldiazoacetates
John F. Briones,† Jørn Hansen,† Kenneth I. Hardcastle,† Jochen Autschbach,‡ and
Huw M. L. Davies*,†
Department of Chemistry, Emory UniVersity, 1515 Dickey DriVe, Atlanta, Georgia 30322, United States,
and Department of Chemistry, UniVersity at Buffalo, SUNY, Buffalo, New York 14226, United States
Received July 28, 2010; E-mail: hmdavie@emory.edu
Abstract: Dirhodium tetrakis((S)-N-(dodecylbenzenesulfonyl)prolinate) (Rh2(S-DOSP)4) is an effective
catalyst for highly enantioselective cyclopropenation reactions between terminal alkynes and arylvinyldia-
zoacetates. The resulting vinylcyclopropenes can undergo rhodium-catalyzed regioselective rearrangement
to cyclopentadienes. Computational studies indicate that the high enantioselectivity of the process is
governed by the specific orientation of the alkyne during its approach to the carbenoid through a relatively
late transition state. The specific orientation occurs due to the presence of a hydrogen bonding interaction
between the alkyne hydrogen and a carboxylate ligand on the dirhodium catalyst.
of this approach are not abundant.7 An alternative way to prepare
cyclopropenes is through the cyclopropenation of alkynes by
Introduction
Chiral cyclopropenes are valuable intermediates in organic
synthesis.1 Their versatility has been demonstrated in a number
of synthetically important transformations, including addition
across the strained double bond,2 transition metal-catalyzed
cycloisomerization to heterocycles,3 cycloadditions,4 and meta-
lation reactions.5 Traditionally, methods utilized for cyclopro-
pene synthesis have relied on elimination reactions from
available cyclopropane precursors,6 but enantioselective variants
metal carbenoids. Doyle et al. have demonstrated that, the chiral
dirhodium(II) carboxamidate complex Rh2(S-MEPY)4, is an
effective catalyst for enantioselective cyclopropenation reactions
with diazoacetates.8 Corey and co-workers have developed a
mixed carboxylate/carboxamidate catalyst, Rh2(OAc)(DPTI)3,
that was efficiently applied to similar cyclopropenation reac-
tions.9 Furthermore, a convenient approach to chiral cyclopro-
pene synthesis via cyclopropenation, followed by diastereomeric
and parallel kinetic resolution strategies, has been reported by
Fox and co-workers.10
† Emory University.
‡ University at Buffalo.
(1) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. ReV. 2007, 107,
3117. (b) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2006, 128,
4598. (c) Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004,
60, 8103. (d) Fattahi, A.; McCarthy, R. E.; Ahmad, M. R.; Kass, S. R.
J. Am. Chem. Soc. 2003, 125, 11746. (e) Marek, I.; Simaan, S.;
Masawara, A. Angew. Chem., Int. Ed. 2007, 46, 7364.
(2) (a) Baird, M. S. Top. Curr. Chem. 1988, 144, 139. (b) Fox, J. M.;
Liao, L. J. Am. Chem. Soc. 2002, 124, 14322. (c) Ferjancic, Z.;
Cekovic, Z.; Saicic, R. N. Tetrahedron Lett. 2000, 16, 2979. (d)
Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125,
7198. (e) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc.
2000, 122, 978.
We have previously demonstrated that the dirhodium tetra-
carboxylate complex Rh2(S-DOSP)4 (1) is an effective chiral
catalyst for enantioselective cyclopropenation reactions with
aryldiazoacetates, generating cyclopropenes containing a qua-
ternary stereocenter (Scheme 1).11 Related studies by Chang et
al. have shown that copper-catalyzed reactions of aryldiazoac-
etates with arylalkynes generate indenes.12 During our earlier
studies, the reactions between vinyldiazoacetates and phenyl-
acetylene were unsuccessful.11 In this paper, we describe a
(3) (a) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2361. (b)
Padwa, A.; Kassir, J. M.; Xu, S. L. J. Org. Chem. 1991, 56, 6971. (c)
Muller, C.; Granicher, C. HelV. Chim. Acta 1993, 76, 521.
(4) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Synthesis 2006, 1221. (b)
Diev, V. V.; Kostikov, R. R.; Gleiter, R.; Molchanov, A. P. J. Org.
Chem. 2006, 71, 4006. (c) Pallerla, M. K.; Fox, J. M. Org. Lett. 2005,
7, 3593. (d) Pallerla, M. K.; Fox, J. M. Org. Lett. 2007, 9, 5625. (e)
Deem, M. L. Synthesis 1982, 701. (f) Padwa, A.; Fryxell, G. E.
Cyclization Reactions of Cyclopropenes, In AdVances in Strain in
Organic Chemistry, Vol 1; Halton, B., Ed.; Jai Press: Greenwich, CT,
1991.
(7) (a) Schollkopf, U.; Hupfeld, B.; Kuper, S.; Egert, E.; Dyrbusch, M.
Angew. Chem., Int. Ed. Engl. 1988, 27, 433. (b) Muller, P.; Imogai,
H. Tetrahedron: Asymmetry 1998, 9, 4419. (c) Doyle, M. P.; Hu, W.
Tetrahedron Lett. 2000, 41, 6265.
(8) (a) Doyle, M. P.; Winchester, W. P.; Hoorn, J. A. A.; Lynch, V.;
Simonsen, S. H.; Ghosh, R. J. Am. Chem. Soc. 1993, 115, 9968. (b)
Doyle, M. P.; Protopopova, M.; Muller, P.; Ene, D.; Shapiro, E. A.
J. Am. Chem. Soc. 1994, 116, 8492.
(5) (a) Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M. J. Am. Chem. Soc. 2009,
131, 5382. (b) Yan, N.; Liu, X.; Fox, J. M. J. Org. Chem. 2008, 73,
563. (c) Liu, X.; Fox, J. M. J. Am. Chem. Soc. 2006, 128, 5600. (d)
Nakamura, I.; Bajracharya, G. B.; Yamamoto, Y. J. Org. Chem. 2003,
68, 2297.
(9) Lou, Y.; Horikawa, M.; Kloster, R. A.; Hawryluk, N. A.; Corey, E. J.
J. Am. Chem. Soc. 2004, 126, 8916.
(10) (a) Fox, J. M.; Yan, N. Curr. Org. Chem. 2005, 9, 719. (b) Liao,
L. A.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M. Tetrahedron 2004,
60, 1803.
(6) (a) Baird, M. S. In Houben-Weyl: Methods of Organic Chemistry,
4th ed.; de Meijere, A., Ed.; Thieme: Stuggart, 1996; Vol. E17d; pp
2695-2744.
(11) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233.
(12) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268.
9
10.1021/ja106509b 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 17211–17215 17211