ARTICLES
ꢂ5 ml, and the crude intermediate 2 was passed through a plug of silica gel with
CH2Cl2/hexanes (1:5). The filtrate was concentrated to ꢂ25 ml and diluted with
12. Khuong, T.-A. V., Zepeda, G., Ruiz, R., Khan, S. I. & Garcia-Garibay, M. A.
Molecular compasses and gyroscopes: engineering molecular crystals with fast
internal rotation. Cryst. Growth Des. 4, 15–18 (2004).
.
CH2Cl2 (25 ml). Cu(OAc)2 H2O (0.510 mmol) and 2,6-lutidine (1.0 ml) were
added and the reaction mixture was stirred at room temperature for 24 hours.
The reaction mixture was concentrated to ꢂ5 ml, the crude product purified by
passing through a plug of silica gel with CH2Cl2/hexanes (1:10) and the solvent
removed in vacuo to yield 1.
13. Jahnke, E. & Tykwinski, R. R. The Fritsch–Buttenberg–Wiechell rearrangement:
modern applications for an old reaction. Chem. Commun. 46, 3235–3249 (2010).
14. Eglinton, G. & Galbraith, A. R. Cyclic diynes. Chem. Ind. (London)
737–738 (1956).
15. Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: a powerful
tool in molecular construction. Angew. Chem. Int. Ed. 39, 2633–2657 (2000).
16. Haley, M. M. et al. One-pot desilylation/dimerization of ethynyl- and
butadiynyltrimethylsilanes. Synthesis of tetrayne-linked
Solid-state analyses. Single crystals of 4f suitable for X-ray crystallographic analysis
were grown by slow evaporation of a CDCl3/hexanes (1:1) solution at room
ꢀ
temperature. C70H98Si, Mr ¼ 967.57, triclinic crystal system, space group P1 (No. 2),
a ¼ 10.2575(7) Å, b ¼ 14.6634(11) Å, c ¼ 21.9595(16) Å, a ¼ 76.520(1)8,
dehydrobenzoannulenes. Tetrahedron Lett. 38, 7483–7486 (1997).
17. Wang, C., Batsanov, A. S., West, K. & Bryce, M. R. Synthesis and crystal
structures of isolable terminal aryl hexatriyne and octatetrayne derivatives:
Ar–(C;C)nH (n¼3, 4). Org. Lett. 10, 3069–3072 (2008).
b ¼ 89.555(1)8, g ¼ 86.272(1)8, V ¼ 3,205.0(4) Å3, Z ¼ 2, rcalcd ¼ 1.003 g cm23
,
m ¼ 0.073 mm21, l ¼ 0.71073 Å, T ¼ 2100 8C, 2umax ¼ 50.508, total data
collected ¼ 22,875, R1 ¼ 0.0635 for 6,600 observed reflections with [Fo2 ≥ 2s(Fo2)],
wR2 ¼ 0.1884 for 586 variables and 11,578 unique reflections with [Fo2 ≥ 23s(Fo2)],
residual electron density ¼ 0.407 and 20.258 e Å23. CCDC no. 772622.
Single crystals of 1b suitable for X-ray crystallographic analysis were
18. Hay, A. S. Oxidative coupling of acetylenes II. J. Org. Chem. 27,
3320–3321 (1962).
19. Schermann, G., Gro¨sser, T., Hampel, F. & Hirsch, A. Dicyanopolyynes: a
homologous series of end-capped linear sp carbon. Chem. Eur. J. 3,
1105–1112 (1997).
20. Eisler, S. et al. Polyynes as a model for carbyne: synthesis, physical properties,
and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005).
21. Gibtner, T., Hampel, F., Gisselbrecht, J.-P. & Hirsch, A. End-cap stabilized
oligoynes: model compounds for the linear sp carbon allotrope carbyne.
Chem. Eur. J. 8, 408–432 (2002).
22. Mohr, W., Stahl, J., Hampel, F. & Gladysz, J. A. Synthesis, structure, and
reactivity of sp carbon chains with bis(phosphine) pentafluorophenylplatinum
endgroups: butadiynediyl (C4) through hexadecaoctaynediyl (C16) bridges, and
beyond. Chem. Eur. J. 9, 3324–3340 (2003).
23. Meier, H., Stalmach, U. & Kolshorn, H. Effective conjugation length and UV/vis
spectra of oligomers. Acta Polym. 48, 379–384 (1997).
grown by slow evaporation of a xylene solution at room temperature. C98H126
,
ꢀ
Mr ¼ 1,303.99, triclinic crystal system, space group P1 (No. 2), a ¼ 10.5799(10) Å,
b ¼ 10.7732(10) Å, c ¼ 19.6616(18) Å, a ¼ 84.7319(14)8, b ¼ 75.3405(14)8,
g ¼ 87.4321(14)8, V ¼ 2,158.4(3) Å3, Z ¼ 1, rcalcd ¼ 1.003 g cm23
,
m ¼ 0.056 mm21, l ¼ 0.71073 Å, T ¼ 2100 8C, 2u
¼ 50.768, total data
max
collected ¼ 15,603, R1 ¼ 0.0538 for 4,479 observed reflections with [Fo2 ≥ 2s(Fo2)],
wR2 ¼ 0.1535 for 486 variables and 7,893 unique reflections with [Fo2 ≥ 23s(Fo2)],
residual electron density ¼ 0.408 and 20.195 e Å23. CCDC no. 772621.
The diameters of the endgroups for 4f and 1b were estimated from the radius
as measured from the central carbon or silyl atom of the end-capping group to
the outermost proton, based on the X-ray crystallographic structures, using
Mercury CSD 2.2.
Received 14 April 2010; accepted 27 July 2010;
published online 19 September 2010
24. Martin, R. E. & Diederich, F. Linear monodisperse p-conjugated oligomers:
model compounds for polymers and more. Angew. Chem. Int. Ed. 38,
1350–1377 (1999).
25. Hoffmann, R. How chemistry and physics meet in the solid state. Angew.
Chem. Int. Ed. 26, 846–878 (1987).
References
1. Mannion, A. M. Carbon and its Domestication (Springer, 2006).
2. Pierson, H. O. Handbook of Carbon, Graphite, Diamond and Fullerenes –
Properties, Processing and Applications (William Andrew Publishing/
Noyes, 1993).
26. Chalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R.
tert-Butyl-end-capped polyynes: crystallographic evidence of reduced
bond-length alternation. Angew. Chem. Int. Ed. 48, 7915–7919 (2009).
27. Szafert, S. & Gladysz, J. A. Carbon in one dimension: structural analysis of the
higher conjugated polyynes. Chem. Rev. 103, 4175–4205 (2003).
28. Szafert, S. & Gladysz, J. A. Update 1 of: Carbon in one dimension: structural
analysis of the higher conjugated polyynes. Chem. Rev. 106, PR1–PR33 (2006).
3. Falcao, E. H. L. & Wudl, F. Carbon allotropes: beyond graphite and diamond.
J. Chem. Technol. Biotechnol. 82, 524–531 (2007).
4. Webster, A. Carbyne as a possible constituent of the interstellar dust. Mon.
Not. R. Astron. Soc. 192, 7–9 (1980).
5. Hayatsu, R., Scott, R. G., Studier, M. H., Lewis, R. S. & Anders, E. Carbynes in
meteorites: detection, low-temperature origin, and implications for interstellar
molecules. Science 209, 1515–1518 (1980).
6. El Goresy, A. & Donnay, G. A new allotropic form of carbon from the Ries crater.
Science 161, 363–364 (1968).
Acknowledgements
This work was supported by the University of Alberta and the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the Discovery Grant program.
W.A.C. thanks the NSERC (Postgraduate Scholarship-D) and the Alberta Ingenuity Fund
for scholarship support. We also thank F. Marsiglio for discussions and M. Ferguson and
R. McDonald for solving the X-ray structures for 4f and 1b, respectively.
7. Lagow, R. J. et al. Synthesis of linear acetylenic carbon: the ‘sp’ carbon allotrope.
Science 267, 362–367 (1995).
8. Cataldo, F. Polyynes: Synthesis, Properties and Applications (Taylor &
Francis, 2005).
9. Chalifoux, W. A. & Tykwinski, R. R. Synthesis of extended polyynes: toward
carbyne. C. R. Chim. 12, 341–358 (2009).
Author contributions
W.A.C. designed the experiments, and performed the syntheses, characterization and
property studies. W.A.C. and R.R.T co-wrote the paper. R.R.T conceived the project.
10. Eastmond, R., Johnson, T. R. & Walton, D. R. M. Silylation as a protective
method for terminal alkynes in oxidative couplings. Tetrahedron 28,
4601–4616 (1972).
11. Zheng, Q. et al. A synthetic breakthrough into an unanticipated stability regime:
a series of isolable complexes in which C6, C8, C10, C12, C16, C20, C24, and C28
polyynediyl chains span two platinum atoms. Chem. Eur. J. 12,
6486–6505 (2006).
Additional information
971
© 2010 Macmillan Publishers Limited. All rights reserved.