Synthetic and Electrochemical Studies on [2Fe2S] Complexes
2
[5]
[6]
a) L.-C. Song, L.-X. Wang, M.-Y. Tang, C.-G. Li, H.-B. Song,
Q.-M. Hu, Organometallics 2009, 3834–3841; b) C. Tard, X. M.
Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X.
Yang, L. S. Wang, G. Sawers, C. J. Pickett, Nature 2005, 433,
610–613.
(s, 3 H, OCH3), 2.71 (d, JH,H = 14.8 Hz, 2 H, SCHAHB), 2.53 (d,
2JH,H = 14.8 Hz, 2 H, SCHAHB) ppm. 13C NMR (50 MHz,
CDCl3): δ = 207.0, 206.7 (CO), 169.3 [C(O)OCH3], 139.9, 133.4,
129.2, 127.7 (Caromatic), 63.6 (SCH2CCH2S), 53.6 (CH3), 27.8
(SCH2CCH2S) ppm. MS (DEI): m/z = 543 [M – 2CO]+, 515 [M –
3CO]+, 487 [M – 4CO]+, 459 [M – 5CO]+, 431 [M – 6CO]+. IR
a) J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Benard, M.-M.
Rohmer, Angew. Chem. Int. Ed. 2001, 40, 1768–1771; b) P. Li,
M. Wang, L. Chen, J. Liu, Z. Zhao, L. Sun, Dalton Trans.
2009, 1919–1926; c) S. Ezzaher, J.-F. Capon, F. Gloaguen, F. Y.
Pétillon, P. Schollhammer, J. Talarmin, Inorg. Chem. 2009, 48,
2–4; d) W. Gao, J. Sun, T. Akermark, M. Li, L. Eriksson, L.
Sun, B. Akermark, Chem. Eur. J. 2010, 16, 2537–2546.
a) C. He, M. Wang, X. Zhang, Z. Wang, C. Chen, J. Liu, B.
Akermark, L. Sun, Angew. Chem. Int. Ed. 2004, 43, 3571–3574;
b) X. de Hatten, E. Bothe, K. Merz, I. Huc, N. Metzler-Nolte,
Eur. J. Inorg. Chem. 2008, 4530–4537; c) U.-P. Apfel, C. R.
Kowol, Y. Halpin, F. Kloss, J. Kübel, H. Görls, J. G. Vos, B. K.
Keppler, E. Morera, G. Lucente, W. Weigand, J. Inorg. Bio-
chem. 2009, 103, 1236–1244; d) A. K. Jones, B. R. Lichtenstein,
A. Dutta, G. Gordon, P. L. Dutton, J. Am. Chem. Soc. 2007,
129, 14844–14845; e) U.-P. Apfel, M. Rudolph, C. Apfel, C.
Robl, D. Langenegger, D. Hoyer, B. Jaun, O. Ebert, T. Alperm-
ann, D. Seebach, W. Weigand, Dalton Trans. 2010, 39, 3065–
3071.
a) T.-Y. Shen, G. L. Walford, U. S. Patent 3,547,948, 1970; T.-
Y. Shen, G. L. Walford, Chem. Abstr. 1971, 75, 6336j; b) T. Y.
Shen, G. L. Walford, U. S. Patent 3,655,692, 1972; c) T.-Y.
Shen, G. L. Walford, Chem. Abstr. 1972, 77, 5331h; d) W. G.
Rice, R. R. Schultz, D. C. Baker, L. E. Henderson, PCT Int.
Appl. WO 98 01,440, 1998; e) W. G. Rice, R. R. Schultz, D. C.
Baker, L. E. Henderson, Chem. Abstr. 1998, 128, 123799m; f)
A. W. Coulter, J. B. Lombardini, J. R. Sufrin, P. Talalay, Mol.
Pharmacol. 1974, 10, 319–334.
(KBr): ν = 3431 (s), 3066 (w), 2955 (m), 2922 (m), 2852 (m), 2077
˜
(vs), 2036 (vs), 2002 (vs), 1743 (s) cm–1.
Electrochemistry: Cyclic voltammograms were measured in a three-
electrode cell with a 2.0 mm diameter glassy carbon disc working
electrode, a platinum auxiliary electrode, and a Ag/Ag+ reference
electrode containing 0.01 AgNO3/CH3CN. The solvent contained
0.1 [nBu4N][BF4] as the supporting electrolyte. Measurements
were performed at room temp. using an EG & G PARC 273A po-
tentiostat/galvanostat. Deaeration of the sample solutions was ac-
complished by passing a stream of argon through the solutions for
5 min prior to the measurements, and the solutions were kept under
argon for the duration of the measurements. To monitor the sta-
bility of the reference electrode ferrocene was used as an internal
standard (E1/2 = +0.087 vs. 0.01 AgNO3 in CH3CN).[28]
[7]
Structure Determinations: The intensity data for 8 were collected
on a Nonius Kappa CCD diffractometer with graphite-monochro-
mated Mo-Kα radiation. Data were corrected for Lorentz and po-
larization effects but not for absorption effects.[29,30]
[8]
Crystal Data for 8: C15H24N2O5S2·2CHCl3, Mr = 615.22 gmol–1,
colourless prism, size 0.05ϫ0.05ϫ0.04 mm3, monoclinic, space
group P21, a = 9.2374(4), b = 11.6975(7), c = 13.6656(6) Å, β =
106.68(3)°, V = 1414.47(22) Å3, T = –90 °C, Z = 2, ρcalcd.
=
1.444 gcm–3, µ (Mo-Kα) = 7.84 cm–1, F(000) = 632, 9433 reflections
within the limits h(–11/11), k(–14/15), l(–17/15), measured in the
range 2.89° Յ θ Յ 27.48°, completeness θmax = 99.3%, 5786 inde-
[9]
D. R. Appleton, B. R. Copp, Tetrahedron Lett. 2003, 44, 8963–
8965.
E. Morera, M. Nalli, F. Pinnen, D. Rossi, G. Lucente, Bioorg.
Med. Chem. Lett. 2000, 10, 1585–1588.
[10]
[11]
pendent reflections, Rint = 0.0503, 3857 reflections with Fo
4σ(Fo), 307 parameters, 1 restraint, R1obsd. = 0.0677, wR2obsd.
Ͼ
=
a) L.-C. Song, J. Yan, Y.-L. Li, D.-F. Wang, Q.-M. Hu, Inorg.
Chem. 2009, 48, 11376–11381; b) L.-C. Song, H.-T. Wang, J.-
H. Ge, S.-Z. Mei, J. Gao, L.-X. Wang, B. Gai, L.-Q. Zhao, J.
Yan, Y.-Z. Wang, Organometallics 2008, 27, 1409–1416.
E. Morera, G. Lucente, G. Ortar, M. Nalli, F. Mazza, E. Ga-
vuzzo, S. Spisani, Bioorg. Med. Chem. 2002, 10, 147–157.
E. Morera, M. Nalli, A. Mollica, M. Paglialunga Paradisi, M.
Aschi, E. Gavuzzo, F. Mazza, G. Lucente, J. Pept. Sci. 2005,
11, 104–112.
a) C. Hansch, P. G. Sammes, J. B. Taylor, in: Comprehensive
Med. Chem., Pergamon Press, Oxford, 1990, vol. 2, chapter
7.1; b) P. R. Hanson, D. A. Probst, R. E. Robinson, M. Yau,
Tetrahedron Lett. 1999, 40, 4761–4764; c) J. H. McKerrow,
M. N. G. James, in: Perspectives in Drug Discovery and Design
(Eds.: P. S. Anderson, G. L. Kenyon, G. R. Marshall), ESCOM
Science Publishers, Leiden, 1996, vol. 6, pp. 1–120; d) W. R.
Roush, S. L. Gwaltney II, J. Cheng, K. A. Scheidt, J. H.
McKerrow, E. Hansell, J. Am. Chem. Soc. 1998, 120, 10994–
10995.
0.1713, R1all = 0.1076, wR2all = 0.1970, GOF = 1.007, Flack param-
eter: –0.14(10), largest difference peak and hole: 1.218 and
–0.693 eÅ–3. The structure was solved by direct methods
(SHELXS)[31] and refined by full-matrix least-squares techniques
[12]
[13]
2
against Fo (SHELXL-97).[32] All hydrogen atom positions were
included at calculated positions with fixed thermal parameters.
All non-hydrogen atoms were refined anisotropically.[32] XP
(SIEMENS Analytical X-ray Instruments, Inc.) was used for struc-
ture representations. CCDC-775460 (for 8) contains the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[14]
Supporting Information (see also the footnote on the first page of
this article): Crystallographic data.
Acknowledgments
[15]
[16]
[17]
M. A. Navia, Science 2000, 288, 2132–2133.
F. M. Menger, C. L. Johnson, Tetrahedron 1967, 23, 19–27.
A. Agren, U. Hedsten, B. Jonsson, Acta Chem. Scand. 1961,
15, 1532–1544.
M. L. Bender, F. J. Kézdy, B. Zerner, J. Am. Chem. Soc. 1963,
85, 3017–3024.
F. M. Menger, L. Mandell, J. Am. Chem. Soc. 1967, 89, 4424–
4426.
M. K. Harb, U.-P. Apfel, J. Kübel, H. Görls, G. A. N. Felton,
T. Sakamoto, D. H. Evans, R. S. Glass, D. L. Lichtenberger,
M. El-khateeb, W. Weigand, Organometallics 2009, 28, 6666–
6675.
The authors thank the Studienstiftung des deutschen Volkes for
financial support in form of a PhD grant (to U.-P. A.), and M.
Rudolph for valuable discussions.
[18]
[19]
[20]
[1] J. W. Peters, W. N. Lanzilotta, B. J. Lemon, L. C. Seefeldt, Sci-
ence 1998, 282, 1853–1858.
[2] Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian, J. C. Fontec-
illa-Camps, Structure 1999, 7, 13–23.
[3] M. L. Singleton, N. Bhuvanesh, J. H. Reibenspies, M. Y. Dar-
ensbourg, Angew. Chem. Int. Ed. 2008, 47, 9492–9495.
[4] B. E. Barton, T. B. Rauchfuss, Inorg. Chem. 2008, 47, 2261–
2263.
[21]
U.-P. Apfel, D. Troegel, Y. Halpin, S. Tschierlei, U. Uhlemann,
M. Schmitt, J. Popp, H. Görls, P. Dunne, M. Venkatesan, M.
Eur. J. Inorg. Chem. 2010, 5079–5086
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
5085