In the present reaction, we assume that the two Ni centers
function cooperatively as observed in other related reactions
using Ni2–1.13 The postulated reaction mechanism is summarized
in Fig. 2. One of the Ni–O bonds in the outer O2O2 cavity is
speculated to work as a Brønsted base to generate Ni–enolate
in situ.17 The other Ni in the inner N2O2 cavity functions as a
Lewis acid to control the position of nitroethylene, similar to
conventional metal–salen Lewis acid catalysis. The C–C
bond-formation via the transition state (TS in Fig. 2), followed
by protonation, affords product and regenerates the Ni2–1
catalyst.
2008, 6, 3467; (c) T. A. Moss, B. Alonso, D. R. Fenwick and
D. J. Dixon, Angew. Chem., Int. Ed., 2010, 49, 568.
10 Recent reviews on bifunctional Lewis acid/Brønsted base
asymmetric metal catalysis: (a) S. Matsunaga and M. Shibasaki,
Bull. Chem. Soc. Jpn., 2008, 81, 60; (b) M. Shibasaki, S. Matsunaga
and N. Kumagai, Synlett, 2008, 1583.
11 For
a general review on bimetallic Schiff base catalysts:
R. M. Haak, S. J. Wezenberg and A. W. Kleij, Chem. Commun.,
2010, 46, 2713.
12 Co2–1 catalyst for 1,4-addition of b-keto esters to b-substituted
nitroalkenes: (a) M. Furutachi, Z. Chen, S. Matsunaga and
M. Shibasaki, Molecules, 2010, 15, 532; (b) Z. Chen,
M. Furutachi, Y. Kato, S. Matsunaga and M. Shibasaki, Angew.
Chem., Int. Ed., 2009, 48, 2218. Mn2–1 catalyst for 1,4-addition of
N-Boc oxindoles to b-substituted nitroalkenes: (c) Y. Kato,
M. Furutachi, Z. Chen, H. Mitsunuma, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2009, 131, 9168.
13 Ni2–1 catalyst: (a) Z. Chen, H. Morimoto, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2008, 130, 2170; (b) Y. Xu,
G. Lu, S. Matsunaga and M. Shibasaki, Angew. Chem., Int. Ed.,
2009, 48, 3353; (c) S. Mouri, Z. Chen, S. Matsunaga and
M. Shibasaki, Chem. Commun., 2009, 5138; (d) S. Mouri,
Z. Chen, H. Mitsunuma, M. Furutachi, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2010, 132, 1255; For the use of
Ni2–1 catalyst in 1,4-addition to b-substituted nitroalkenes with
other donors: (e) N. E. Shepherd, H. Tanabe, Y. Xu, S. Matsunaga
and M. Shibasaki, J. Am. Chem. Soc., 2010, 132, 3666; (f) Y. Xu,
S. Matsunaga and M. Shibasaki, Org. Lett., 2010, 12, 3246.
14 Heterobimetallic transition metal/rare earth metal Schiff base
catalysts: (a) S. Handa, V. Gnanadesikan, S. Matsunaga and
M. Shibasaki, J. Am. Chem. Soc., 2007, 129, 4900; (b) S. Handa,
K. Nagawa, Y. Sohtome, S. Matsunaga and M. Shibasaki, Angew.
Chem., Int. Ed., 2008, 47, 3230; (c) H. Mihara, Y. Xu,
N. E. Shepherd, S. Matsunaga and M. Shibasaki, J. Am. Chem.
Soc., 2009, 131, 8384; (d) S. Handa, V. Gnanadesikan, S. Matsunaga
and M. Shibasaki, J. Am. Chem. Soc., 2010, 132, 4925.
In summary, we developed a homodinuclear Ni2–Schiff
base-catalyzed enantioselective 1,4-addition of b-keto esters
to nitroethylene. The reaction proceeded with 1–10 mol%
catalyst, and products bearing a quaternary carbon stereo-
center adjacent to an ester were obtained in 98–75% ee and
99–35% yield (TON = up to 84). Further studies to improve
the poor reactivity for acyclic b-keto esters through ligand
modification are ongoing.
This work was supported by Takeda Science Foundation,
Inoue Science Research Award from Inoue Science Foundation,
and Grant-in-Aid for Young Scientists (A) from JSPS. We
thank Prof. M. Shibasaki at Institute of Microbial Chemistry,
Tokyo and Prof. M. Kanai at the University of Tokyo for
their generous supports, fruitful discussion, and unrestricted
access to analytical facilities.
Notes and references
1 Recent reviews on catalytic asymmetric construction of quaternary
carbon stereocenters: (a) J. Christoffers and A. Baro, Adv. Synth.
Catal., 2005, 347, 1473; (b) B. M. Trost and C. Jiang, Synthesis,
2006, 369; (c) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J.
Org. Chem., 2007, 5969.
2 General reviews on asymmetric 1,4-addition to electron-deficient
alkenes with metal catalysis: (a) J. Christoffers, G. Koripelly,
A. Rosiak and M. Rossle, Synthesis, 2007, 1279; With organo-
catalysis: (b) S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701.
3 A review on asymmetric 1,4-addition to nitroalkenes:
O. M. Berner, L. Tedeschi and D. Enders, Eur. J. Org. Chem.,
2002, 1877.
4 (a) Y. Chi, L. Guo, N. A. Kopf and S. H. Gellman, J. Am. Chem.
Soc., 2008, 130, 5608; (b) M. Wiesner, J. D. Revell, S. Tonazzi and
H. Wennemers, J. Am. Chem. Soc., 2008, 130, 5610.
5 T. Bui, S. Syed and C. F. Barbas, III, J. Am. Chem. Soc., 2009, 131,
8758.
6 Reviews on the foldamer research: (a) C. M. Goodman, S. Choi,
S. Shandler and W. F. Degrado, Nat. Chem. Biol., 2007, 3, 252;
(b) D. Seebach, M. Brenner, M. Rueping and B. Jaun, Chem.–Eur.
J., 2002, 8, 573; (c) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173.
7 A general review on asymmetric synthesis of g-amino acids:
M. Ordonez and C. Cativiela, Tetrahedron: Asymmetry, 2007, 18, 3.
8 For diastereoselective 1,4-addition of a chiral enamino ester
derived from a cyclic b-keto ester and chiral amine to nitroethylene,
see: J. d’Angelo, C. Cave, D. Desmaele, A. Gassama,
C. Thominiaux and C. Riche, Heterocycles, 1998, 47, 725.
9 For alternative highly enantioselective catalytic asymmetric
approaches to g2,2-amino acids with a-quaternary carbon stereo-
centers via ring-opening reactions of aziridines and cyclic sulfamidates
with b-keto esters, see: (a) T. A. Moss, D. R. Fenwick and
D. J. Dixon, J. Am. Chem. Soc., 2008, 130, 10076; (b) M. W. Paixao,
M. Nielsen, C. B. Jacobsen and K. A. Jørgensen, Org. Biomol. Chem.,
15 For selected examples of related bifunctional bimetallic Schiff base
complexes in asymmetric catalysis from other groups, see:
(a) V. Annamalai, E. F. DiMauro, P. J. Carroll and
M. C. Kozlowski, J. Org. Chem., 2003, 68, 1973 and references
therein; (b) M. Yang, C. Zhu, F. Yuan, Y. Huang and Y. Pan, Org.
Lett., 2005, 7, 1927; (c) J. Gao, F. R. Woolley and R. A. Zingaro,
Org. Biomol. Chem., 2005, 3, 2126; (d) W. Li, S. S. Thakur,
S.-W. Chen, C.-K. Shin, R. B. Kawthekar and G.-J. Kim, Tetra-
hedron Lett., 2006, 47, 3453; (e) C. Mazet and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2008, 47, 1762; (f) J. Park, K. Lang,
K. A. Abboud and S. Hong, J. Am. Chem. Soc., 2008, 130, 16484;
(g) W. Hirahata, R. M. Thomas, E. B. Lobkovsky and
G. W. Coates, J. Am. Chem. Soc., 2008, 130, 17658; (h) B. Wu,
J. C. Gallucci, J. R. Parquette and T. V. RajanBabu, Angew.
Chem., Int. Ed., 2009, 48, 1126; For related early studies with
dinuclear Ni2–Schiff base complexes as epoxidation catalysts, see
also: (i) T. Oda, R. Irie, T. Katsuki and H. Okawa, Synlett, 1992,
641; For other examples, see ref. 11.
16 The absolute configuration of 3b was determined by comparing
with the reported data in ref. 9c after conversion into known g2,2-amino
ester. See ESIw.
17 1H NMR analysis of the bimetallic Ni2–1 complex does not show
any peaks, suggesting that at least one of Ni metal centers has
non-planar coordination mode. Based on the molecular model, we
assume that the outer Ni center has cis-b configuration due to
strain of the bimetallic complex. In other words, one of the Ni–O
bonds of the outer Ni center is speculated to be in apical position.
Thus, the weak Ni–O bond would work as a Brønsted baseto
deprotonate b-keto esters to give the Ni–enolate intermediate.
Detailed mechanistic studies to clarify the role of two Ni metal
centers are ongoing. For the utility of cis-b metal complexes of
salens in asymmetric catalysis, see a review: T. Katsuki, Chem. Soc.
Rev., 2004, 33, 437.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 469–471 471