Bernini et al.
JOCArticle
Introduction
Catechins (flavan-3-ols) are phenolic compounds present
in a variety of plant foods1 and beverages, in particular red
wine2 and green tea.3 Several epidemiological studies have
focused on the biological activities, including antioxidant,4
antibacterial,5 and anticancer properties,6 of (þ)-catechin 1
and (-)-epicatechin 2 (Figure 1).
These compounds are the building blocks of proantho-
cyanidins, also known as condensed tannins, flavonoid
dimers widely distributed in the plant kingdom.7 Due to
their beneficial health effects,8 nutritionists and pharmacolo-
gists are showing a growing interest in these natural prod-
ucts. Their chemical structure varies depending upon the
stereochemistry of the flavan-3-ol starter [2,3-trans in (þ)-
catechin 1 and 2,3-cis in (-)-epicatechin 2] and extension
units, the position and stereochemistry of the linkage to the
“lower” unit, the degree of polymerization, and the presence
or absence of modifications such as esterification of the
3-hydroxyl group. Their biosynthesis is under strict enzy-
matic control because the different types of dimers are
characteristic of specific plant species.9
Oxidations of organic compounds are very useful reac-
tions in the fine chemical industry in order to introduce
structural chemical modifications into an organic compound
and modify its biological and/or pharmacological proper-
ties. Stoichiometric toxic oxidants, such as chromium(VI)
salts, cerium ammonium nitrate (CAN), thallium(III)
nitrate, potassium permanganate (KMnO4), potassium
dichromate (K2Cr2O7), and sulfuric acid/nitric acid (H2SO4/
HNO3), have been widely employed in the past.10 Recently,
according to the green chemistry approach,11 they have been
substituted by ecofriendly reagents, such as oxygen (O2) and
hydrogen peroxide (H2O2), activated by an appropriate
catalyst (iron and manganese porphyrins, phthalocyanines,
iron amide complexes, TAML (Tetra-Amido Macrocyclic
FIGURE 1. Chemical structures of catechin derivatives 1-4.
Ligand), selenoxides, polyoxometallates, titanium silicalite,
tungsten, molybdenum and vanadium complexes, Sn-zeolite
beta, and methyltrioxorhenium).12
Some of us have previously reported several oxidative con-
versions of phenolic compounds into new bioactive compounds
by nonenzymatic ecofriendly catalytic oxidations.13 For exam-
ple, lactones prepared by oxidative modifications of flavanones
exhibited an apoptotic activity on tumoral cell lines;13a flava-
nones obtained from flavones, p-benzoquinones from alkylated
phenols and catechins were efficient against common strains of
saprotrophic soil and seed fungi, pathogenic to humans.13b-d
Recently, as an alternative route, we have turned our atten-
tion to the oxidations of phenols catalyzed by enzymes. In fact,
these compounds are known to be susceptible to enzymatic
oxidations giving rise to a variety of dimeric, oligomeric, and
polymeric products.14 Oxidations of phenols by polyphenol
oxidase,15 hydrogen peroxide-dependent peroxidases,16 and
copper oxidases17 have been described. Polyphenol oxidases,
which are involved in the biosynthesis of lignin, tannin, and
melanin, catalyze the oxygen-dependent coupling of phenols
responsible for browning in fruit juices.18
(12) (a) Corma, A. In Fine Chemicals through Heterogeneous Catalysis;
Sheldon, R. A., Van Bekkum, H., Eds.; Wiley-VCH: Weinheim, Germany,
2000; pp 80-91. (b) Jost, C.; Wahl, G.; Kleinhenz, D.; Sundermeyer, J. In
Peroxide Chemistry; Adam, W., Ed.; Wiley-VCH: Weinheim, Germany,
2000; pp 341-364. (c) Herrmann, W. A. In Applied Homogeneous Catalysis
with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; Wiley-
VCH: Weinheim, Germany, 2002; Vol. 3, pp 1304-1318.
(1) (a) Arts, I. C. W.; Van de Putte, B.; Hollman, P. C. H. J. Agric. Food
Chem. 2000, 48, 1746–1751. (b) Arts, I. C. W.; Al-Awwadi, N.; Bornet, A.;
Rouanet, J.-M.; Gasc, F.; Cros, G.; Teissedre, P. L. Food Res. Int. 2004, 37,
233–245.
(13) (a) Bernini, R.; Mincione, E.; Cortese, M.; Saladino, R.; Gualandi,
G.; Belfiore, M. C. Tetrahedron Lett. 2003, 44, 4823–4825. (b) Bernini, R.;
Mincione, E.; Provenzano, P.; Fabrizi, G. Tetrahedron Lett. 2005, 46, 2993–
2996. (c) Bernini, R.; Mincione, E.; Barontini, M.; Fabrizi, G.; Pasqualetti,
M.; Tempesta, S. Tetrahedron 2006, 62, 7733–7737. (d) Bernini, R.; Mincione, E.;
Provenzano, G.; Fabrizi, G.; Tempesta, S.; Pasqualetti, M. Tetrahedron
2008, 64, 7561–7566.
ꢁ
(2) (a) Perez-Magarino, S.; Gonzalez-San Jose, M. L. J. Agric. Food
Chem. 2004, 52, 1181–1189. (b) Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B.
Int. J. Mol. Sci. 2010, 11, 622–646.
(3) (a) Feng, W. Y. Curr. Drug Metab. 2006, 7, 755–809. (b) Khan, N.;
Mukhtar, H. Life Sci. 2007, 519–533. (c) Lambert, J. D.; Sang, S.; Yang, C. S.
Mol. Pharmaceutics 2007, 4, 819–825.
(4) (a) Valcic,S.;Muders, A.;Jacobsen, N. E.;Liebler, D.C.;Timmermann,
B. N. Chem. Res. Toxicol. 1999, 12, 382–386. (b) Bagchi, D.; Bagchi, M.;
Bors, W.; Michel, C. Free Radical Biol. Med. 1999, 27, 1413–1426.
(c) Stohs, S. J.; Das, D. K.; Ray, S. D.; Kuszynski, C. A.; Joshi, S. S.; Pruess,
H. G. Toxicology 2000, 148, 187–197. (d) Valcic, S.; Burr, J. A.; Timmermann,
(14) (a) Cheynier, V.; Osse, C.; Rigaud, J. J. Food Sci. 1988, 53, 1729–
1731. (b) Hirose, Y.; Yamaoka, H.; Nakayama, M. J. Am. Oil Chem. Soc.
1991, 68, 131–132. (c) Tanaka, T.; Takahashi, M.; Hagino, H.; Nudejima,
S.-I.; Usui, H.; Fujii, T.; Taniguchi, M. Chem. Eng. Sci. 2009, 65, 569–573.
(d) Areskogh, D.; Li, J.; Nousiainen, P.; Gellerstedt, G.; Sipilae, J.;
Henriksson, G. Holzforschung 2010, 64, 21–34.
(15) (a) Guyot, S.; Vercauteren, J.; Cheynier, V. Phytochemistry 1996, 42,
1279–1288. (b) Burton, S. G. Curr. Org. Chem. 2003, 7, 1317–1331.
(16) (a) Waldemar, A.; Michael, L.; Chantu, R.; Saha, M.; Oliver, W.;
Ute, H.; Dietmar, H.; Peter, S. Biotransformations with peroxidases. In
Advances in Biochemical Engineering Biotechnology; Scheper, T.; Ed.; Springler:
New York, 1999; pp 73-108. (b) Adam, W.; Lazarus, M.; Saha-Muller,
C. R.; Weichold, O.; Horch, U.; Haring, D.; Schreier, P. Biotransformations
with peroxidases. In Biotrasformations; Faber, K., Ed.; Springler-Verlag:
New York, 2000; pp 73-108. (c) Wilkens, A.; Paulsen, J.; Wray, V.;
Winterhalter, P. J. Agric. Food Chem. 2010, 58, 6754–6761.
(17) (a) Holland, H. L. Organic Synthesis with oxidative enzymes; VCH
Publishers: New York, 1992; pp 19-24. (b) Queiroz, C.; Mendes Lopes,
M. L.; Fialho, E.; Valente-Mesquita, V. L. Food Rev. Int. 2008, 24, 361–375.
(18) (a) Chenier, V.; Fulcrand, H.; Guyot, S.; Oszmianski, J.; Moutount,
M. Reactions of enzymically generated quinones in relation to browing in
grape musts and wines. In Enzymatic browing and its prevention in foods; Lee,
C. Y., Whitaker, J. R., Eds.; ACS Symp. Ser. No. 600; American Chemical
Society: Washington, DC, 1995; pp 130-143. (b) Ramirez, E. C.; Whitaker,
J. R.; Virador, V. M. Polyphenol oxidase. In Handbook of Food Enzymology;
Whitaker, J. R., Voragen, A. G. J., Wong, D. W. S., Eds.; Marcel Dekker:
New York, 2002, Chapter 39.
ꢀ
B. N.; Liebler, D. C. Chem. Res. Toxicol. 2000, 13, 801–810. (e) Cren-Olive,
C.; Hapiot, P.; Pinson, J.; Rolando, C. J. Am. Chem. Soc. 2002, 124, 14027–
14038.
(5) Kajiya, K.; Hojo, H.; Suzuki, M.; Nanjo, F.; Kumazawa, S.; Nakayama,
T. J. Agric. Food Chem. 2004, 52, 1514–1519.
(6) Ahmad, N.; Gupta, S.; Mukhtar, H. Arch. Biochem. Biophys. 2000,
376, 338–346.
(7) (a) Gonzalez-Paramas, A. M.; Esteban-Ruano, S.; Santos-Buelga, C.;
De Pascual-Teresa, S.; Rivas-Gonzalo J. Agric. Food. Chem. 2004, 52, 234–
238. (b) Louli, V.; Ragaussis, N.; Magaulas, K. Bio. Technol. 2004, 92,
201–208.
(8) Xie, D.-Y.; Dixon, R. A. Phytochemistry 2005, 66, 2127–2144.
(9) (a) Sang, S.; Tian, S. T.; Wang, H.; Stark, R. E.; Rosen, R. T. Bioorg.
Med. Chem. 2003, 11, 3371–3378. (b) Scalbert, A. Phytochemistry 1991, 30,
3875–3883. (c) Katiyar, S. K.; Mukhtar, H. J. Cell. Biochem. 1997, 27, 59–67.
(d) Dixon, R. A.; De-Yu Xie, D.-Y.; Sharma, S. B. New Phytol. 2005, 165,
9–28.
(10) Haslam, E. Phytochemistry 1977, 16, 1625–1640.
(11) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301–312.
J. Org. Chem. Vol. 76, No. 3, 2011 821