one of the best established strategies for the construction of
chiral C-N bonds in organic chemistry.4,5 Catalytic en-
antioselective R-amination of pyrazolone has not yet been
investigated to conduct optically active 4-amino-5-pyra-
zolones which are the core frame of numerous pharma-
ceutical compounds.
Table 1. Asymmetric R-Amination of 4-Benzyl-5-pyrazolone
Catalyzed by N,N0-Dioxide-Metal Complexesa
In asymmetric catalysis, the contribution of the chiral
complex is of leading importance. Our group is endeavor-
ing to develop chiral C2-symmetric N,N0-dioxide into a
helpful ligand which could coordinate with a series of
cations to form chiral complex catalysts.6-8 Especially, it
could give selective and flexible catalysts with lanthanide
metal salts9 which feature advantages in stability, recovery,
the electropositive properties, and high coordination abil-
ity. Herein, we wish to report the first highly enantioselec-
tive R-amination of 4-substituted 5-pyrazolones with
azodicarboxylates using a chiral N,N0-dioxide-Gd(III)
complex as the catalyst. Excellent yields (up to 99%) and
enantioselectivities (up to97% ee) were achievedfor a wide
range of pyrazolones at 0.05-1 mol % catalyst loading.
Initially, (S)-pipecolic acid derived N,N0-dioxide L1 was
complexed with various lanthanide metal salts to catalyze
the asymmetric R-amination of 4-benzyl-5-pyrazolone (1a)
rion
˚
Yield
(%)c
ee
b
(A)
Entry
Metal
Ligand
(%)d
1
La(OTf)3
Ce(OTf)3
Pr(OTf)3
Nd(OTf)3
Sm(OTf)3
Eu(OTf)3
Gd(OTf)3
Tb(OTf)3
Dy(OTf)3
Ho(OTf)3
Er(OTf)3
Tm(OTf)3
Yb(OTf)3
Lu(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
Gd(OTf)3
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L1
L2
L3
L4
L5
L1
L1
L1
L1
1.032
1.010
0.990
0.983
0.958
0.947
0.938
0.923
0.912
0.901
0.890
0.880
0.868
0.861
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
98
94
90
94
95
90
95
90
88
97
96
94
93
85
85
96
91
59
99
98
99
96
49
76
77
82
91
92
93
92
89
89
83
75
67
59
72
73
73
48
96
96
95
93
2
3
4
5
6
7
(4) For reviews on asymmetric R-amination reactions, see: (a) Xu,
8
ꢀ
L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807. (b) Najera, C.;
9
Sansano, J. M. Chem. Rev. 2007, 107, 4584. (c) Janey, J. M. Angew. Chem.,
Int. Ed. 2005, 44, 4292. (d) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J.
Org. Chem. 2004, 1377. (e) Duthaler, R. O. Angew. Chem., Int. Ed. 2003,
42, 975.
10
11
12
(5) For selected examples of asymmetric R-amination, see: (a) Bui, T.;
13
ꢀ
Hernandez-Torres, G.; Milite, C.; Barbas, C. F., III. Org. Lett. 2010, 12,
14
5696. (b) Han, X.; Zhong, F.; Lu, Y. Adv. Synth. Catal. 2010, 352, 2778.
(c) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255. (d) Yang, Z. G.; Wang, Z.;
Bai, S.; Shen, K.; Chen, D. H.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem.;
Eur. J. 2010, 16, 6632. (e) Bui, T.; Borregan, M.; Barbas, C. F., III. J. Org.
Chem. 2009, 74, 8935. (f) Mashiko, T.; Kumagai, N.; Shibasaki, M. J. Am.
Chem. Soc. 2009, 131, 14990. (g) He, R.; Wang, X.; Hashimoto, T.;
Maruoka, K. Angew. Chem., Int. Ed. 2008, 47, 9466. (h) Liu, T.-Y.; Cui,
H.-L.; Zhang, Y.; Jiang, K.; Du, W.; He, Z.-Q.; Chen, Y.-C. Org. Lett. 2007,
9, 3671. (i) Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.;
Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 11342. (j) Terada, M.; Nakano,
M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044. (k) Liu, X.; Li, H.; Deng,
L. Org. Lett. 2005, 7, 167. (l) Bernardi, L.; Zhuang, W.; Jørgensen, K. A.
J. Am. Chem. Soc. 2005, 127, 5772. (m) Saaby, S.; Bella, M.; Jørgensen,
K. A. J. Am. Chem. Soc. 2004, 126, 8120. (n) Vogt, H.; Vanderheiden, S.;
15
16
17
18
19e,f
20e,g,h
21e,g,h,i
22e,g,h,j
a Unless otherwise noted, all reactions were carried out with 1a
(0.1 mmol) and 2a (0.1 mmol) in CH2Cl2 (1.0 mL) with catalyst loading
of 5 mol % (metal/ligand = 1:1) under nitrogen at -20 °C for 36 h. b rion
:
3þ 9b,10 c Yield of isolated product. d Determined by
˚
ionic radii (A) of Ln
.
€
Brase, S. Chem. Commun 2003, 2448. (o) Marigo, M.; Juhl, K.; Jørgensen,
HPLC using chiral AD-H column. e 20 mg of 4 A molecular sieves (MS)
were added. f Reaction time: 2 h. g Reaction time: 4 h. h 1 mol % of
catalyst loading was used. i Performed at 0 °C. j The reaction was carried
out under an air atmosphere.
˚
K. A. Angew. Chem., Int. Ed. 2003, 42, 1367. (p) Juhl, K.; Jørgensen, K. A.
J. Am. Chem. Soc. 2002, 124, 2420. (q) List, B. J. Am. Chem. Soc. 2002,
124, 5656. (r) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595. (s) Evans,
D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119, 6452.
(6) For reviews on chiral N-oxides in asymmetric catalysis, see:
ꢁ
ꢀ
(a) Malkov, A. V.; Kocovsky, P. Eur. J. Org. Chem. 2007, 29. (b)
Chelucci, G.; Murineddu, G.; Pinna, G. A. Tetrahedron: Asymmetry
and diisopropylazodicarboxylate (2a) in CH2Cl2 at-20°C
(Table 1). The central metal ion was found to significantly
affect the enantioselectivity of the reaction. As shown in
Table 1, when changing the central metal from La(OTf)3 to
Gd(OTf)3 in a gradually diminished order of the ionic
radii, the enantioselectivity came to increase from 49% to
93% ee and the reactions completed within 36 h to give
product 3a with appropriate yields (Table 1, entries 1-7).
In contrast, the enantioselectivity gradually decreased
from 93% to 59% ee when the central metal was changed
from Gd(OTf)3 toLu(OTf)3 withthe ionic radii continuing
to decrease (Table 1, entries 7-14). The results of the
influence of the metal cation suggested that Gd3þ has
relative proper ionic radii to coordinate with the ligand
ꢁ
ꢀ
2004, 15, 1373. (c) Malkov, A. V.; Kocovsky, P. Curr. Org. Chem. 2003,
7, 1737 and the references therein.
(7) For our own work in this field, see: (a) Xie, M. S.; Chen, X. H.;
Zhu, Y.; Gao, B.; Lin, L. L.; Liu, X. H.; Feng, X. M. Angew. Chem., Int.
Ed. 2010, 49, 3799. (b) Li, W.; Wang, J.; Hu, X. L.; Shen, K.; Wang, W. T.;
Chu, Y. Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. J. Am. Chem. Soc. 2010, 132,
8532. (c) Wang, W. T.; Liu, X. H.; Cao, W. D.; Wang, J.; Lin, L. L.; Feng,
X. M. Chem.;Eur. J. 2010, 16, 1664. (d) Liu, Y. L.; Shang, D. J.; Zhou, X.;
Zhu, Y.; Lin, L. L.; Liu, X. H.; Feng, X. M. Org. Lett. 2010, 12, 180.
(e) Chen, D. H.; Chen, Z. L.; Xiao, X.; Yang, Z. G.; Lin, L. L.; Liu, X. H.;
Feng, X. M. Chem.;Eur. J. 2009, 15, 6807. (f) Liu, Y. L.; Shang, D. J.;
Zhou, X.; Liu, X. H.; Feng, X. M. Chem.;Eur. J. 2009, 15, 2055.
(8) (a) Kobayashi, S.; Kokubo, M.; Kawasumi, K.; Nagano, T.
Chem.;Asian J. 2010, 5, 490. (b) Kokubo, M.; Ogawa, C.; Kobayashi, S.
Angew. Chem., Int. Ed. 2008, 47, 6909.
(9) (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L.
Chem. Rev. 2002, 102, 2227. (b) Mikami, K.; Terada, M.; Matsuzawa, H.
Angew. Chem., Int. Ed. 2002, 41, 3554.
Org. Lett., Vol. 13, No. 4, 2011
597