394
G. A. Salman et al. / Tetrahedron Letters 52 (2011) 392–394
NMR (75.5 MHz, CDCl3): d = 21.6, 25.2, 39.6 (CH2), 118.5 (q, JF,C = 320.2 Hz, CF3),
carbon C-9
less sterically hindered
less electron deficient
118.6 (q, JF,C = 319.6 Hz, CF3), 121.5 (CH), 123.2 (q, JF,C = 1.4 Hz, CH), 123.9,
126.4 (C), 128.8 (CH), 129.8 (C), 131.3 (CH). 133.3, 140.4, 143.8 (C), 195.9 (CO).
2
~
v
IR (KBr):
= 2849, 2880, 2915, 2964 (w), 1697 (m), 1625, 1594, 1564, 1494,
OTf
1442 (w), 1422 (s), 1384, 1353, 1326, 1278 (w), 1205, 1185, 1129 (s), 1076,
1027 (m), 962 (s), 909 (m), 862 (s), 823, 809, 785 (w), 771 (m), 749 (s), 709 (m),
670 (s), 654, 644, 631 (w), 595 (s), 564, 532 (w) cmÀ1. GC/MS (EI, 70 eV): m/z
(%) = 492 (M+, 92), 359 (82), 295 (97), 253 (54). HRMS (EI, 70 eV): calcd for
C16H10O7S2F6: 491.97666; found: 491.976129.
OTf
O
11. General procedure for Suzuki–Miyaura reactions: A 1,4-dioxane solution (4–5 mL
per 0.3 mmol of 2), K3PO4 (1.5–2.0 equiv), Pd(PPh3)4 (3 mol % per cross-
coupling) and arylboronic acid 3 (1.0–1.1 equiv per cross-coupling) was stirred
at 100–120 °C for 10 h under argon atmosphere. After cooling to 20 °C, distilled
H2O was added. The organic and the aqueous layers were separated and the
latter was extracted with CH2Cl2. The combined organic layers were dried
(Na2SO4), filtered and the filtrate was concentrated in vacuo. The residue was
purified by column chromatography.
1
2
carbon C-10
more sterically hindered
more electron-deficient
Scheme 5. Possible explanation for the site-selective reactions of 2.
12. Synthesis of 9,10-bis(4-methoxyphenyl)-3,4-dihydroanthracen-1(2H)-one (4a):
Starting with
2 (150 mg, 0.3 mmol), 4-methoxyphenylboronic acid 3a
lective formation of products 5a–g and 6a–f can be explained by
the fact that position 10 is electronically more deficient than posi-
tion 9 (Scheme 5). In addition, chelation of the catalyst to the car-
bonyl group might play a role.
In conclusion, the site-selectivity of Suzuki–Miyaura reactions
of the bis(triflate) of 1,2,3,4-tetrahydro-9,10-dihydroxyanthracen-
1-one is controlled by electronic parameters. The first attack occurs
at the electronically more deficient position 10.
(83 mg, 0.66 mmol), Pd(PPh3)4 (21 mg, 6 mol %), K3PO4 (191 mg, 0.9 mmol)
and 1,4-dioxane (5 mL), 4a was isolated as yellow solid (93 mg, 75%); mp 277–
278 °C. 1H NMR (300 MHz, CDCl3): d = 1.89–1.98 (m, 2H, CH2), 2.54 (t, 2H,
J = 6.7 Hz, CH2), 2.71 (t, 2H, J = 6.3 Hz, CH2), 3.82 (s, 3H, OCH3), 3.84 (s, 3H,
OCH3), 6.95 (d, 2H, J = 8.7 Hz, ArH), 7.00 (d, 2H, J = 8.7 Hz, ArH), 7.08 (d, 2H,
J = 8.7 Hz, ArH), 7.15 (d, 2H, J = 8.7 Hz, ArH), 7.20–7.25 (m, 1H, ArH), 7.30 (td,
1H, J = 1.6, 8.5 Hz, ArH), 7.36–7.39 (m, 1H, ArH), 7.49–7.52 (m, 1H, ArH). 13C
NMR (62.9 MHz, CDCl3): d = 22.7, 29.4, 40.8 (CH2), 55.2, 55.3 (OCH3), 113.5,
114.1, 125.4, 126.3, 127.7, 128.6 (CH), 129.7 (C), 130.3 (CH), 131.1 (C), 131.2
(CH), 132.4, 132.5, 134.7, 137.4, 137.6, 141.6, 158.5, 158.9 (C), 200.2 (CO). IR
~
(KBr):
v = 3064, 3033, 3001, 2950, 2904, 2833 (w), 1689, 1607 (m), 1573, 1556
(w), 1509 (s), 1494, 1461, 1455, 1440, 1408, 1373, 1349, 1325, 1303 (w), 1283
(m), 1238 (s), 1172, 1154, 1104 (m), 1031 (s), 1004 (m), 959, 939, 927, 901, 865
(w), 834, 795, 767 (m), 728, 681, 648, 637, 623 (w), 589 (m), 542 (s) cmÀ1. GC/
MS (EI, 70 eV): m/z (%) = 408 (M+, 100), 279 (05), 349 (08), 321 (07). HRMS (EI,
70 eV): calcd for C28H23O3: 407.163709; found: 407.16417.
Acknowledgments
Financial support by the DAAD (scholarships for G.A.S. and for
A.M.), by the State of Pakistan (HEC scholarship for M.H.) and by
the State of Mecklenburg-Vorpommern (scholarship for M.S. and
M.H.) is gratefully acknowledged.
13. Synthesis
of
10-(4-tert-butylphenyl)-4-oxo-1,2,3,4-(tetrahydroanthracen-9-
yl)trifluoromethanesulfonate (5e): Starting with 2 (150 mg, 0.3 mmol), 4-tert-
butylphenylboronic acid (3h, 53 mg, 0.3 mmol), Pd(PPh3)4 (11 mg, 3 mol %),
K3PO4 (127 mg, 0.6 mmol) and 1,4-dioxane (5 mL), 5e was isolated as a yellow
solid (104 mg, 75%); mp 137–138 °C. 1H NMR (300 MHz, CDCl3): d = 1.35 (s, 9H,
3CH3), 2.10–2.14 (m, 2H, CH2), 2.60 (t, 2H, J = 7.3 Hz, CH2), 3.17 (t, 2H,
J = 6.4 Hz, CH2), 7.02 (d, 2H, J = 8.2 Hz, ArH), 7.34–7.5 (m, 4H, ArH), 7.59–7.64
(m, 1H, ArH), 8.03 (d, 1H, J = 8.8 Hz, ArH). 19F NMR (282.4 MHz, CDCl3):
d = À72.78. 13C NMR (62.9 MHz, CDCl3): d = 21.9, 25.4 (CH2), 31.5 (3CH3), 34.7
(C), 40.3 (CH2), 118.7 (q, JF,C = 320.6 Hz, CF3), 120.7, 125.0, 127.0 (CH), 128.3 (C),
128.4, 129.2 (CH), 129.3 (C), 129.8 (CH), 132.6, 133.7, 135.8, 141.1, 143.8, 150.0
~
References and notes
1. Römpp Lexikon Naturstoffe; Steglich, W., Fugmann, B., Lang-Fugmann, S., Eds.;
Thieme: Stuttgart, 1997.
2. Gill, M.; Gimenez, A.; Jhingran, A. G.; Palfreyman, A. R. Tetrahedron Lett. 1990,
31, 1203.
3. Review: Krohn, K. Angew. Chem. 1986, 98, 788; Angew. Chem., Int. Ed. Engl. 1986,
25, 790.
4. Roush, W. R.; Hartz, R. A.; Gustin, D. J. J. Am. Chem. Soc. 1999, 121, 1990.
5. Phifer, S. S.; Lee, D.; Seo, E. K.; Kim, N. C.; Graf, T. N.; Kroll, D. J.; Navarro, H. A.;
Izydore, R. A.; Jimenez, F.; Garcia, R.; Rose, W. C.; Fairchild, C. R.; Wild, R.;
Soejarto, D. D.; Farnsworth, N. R.; Kinghorn, A. D.; Oberlies, N. H.; Wall, M. E.;
Wani, M. C. J. Nat. Prod. 2007, 70, 954.
6. An, T. Y.; Hu, L. H.; Chen, R. M.; Chen, Z. L.; Li, J.; Shen, Q. Chin. Chem. Lett. 2003,
14, 489.
7. Lio, K.; Ramesh, N. G.; Okajima, A.; Higuchi, K.; Fujioka, H.; Akai, S.; Kita, Y. J.
Org. Chem. 2000, 65, 89.
(C), 197.5 (CO). IR (KBr):
v = 3077, 3047, 3027, 2961, 2903, 2865 (w), 1693 (m),
1617, 1591, 1563, 1515, 1494, 1476, 1462, 1439 (w), 1404 (m), 1361, 1320,
1292 (w), 1202, 1135 (s), 1076, 1051 (w), 1023, 965 (m), 931, 901 (w), 848, 832
(s), 800, 772 (w), 749 (s), 719, 698, 687 (w), 665 (m), 641, 619 (w), 582, 561 (m)
cmÀ1. GC/MS (EI, 70 eV): m/z (%) = 476 (M+, 4), 343 (14). HRMS (EI, 70 eV):
calcd for C25H23O4F3S: 476.12637; found: 476.124975.
14. Synthesis of 9-(4-tert-butylphenyl)-10-(4-methoxyphenyl)-3,4-dihydroanthracen-
1(2H)-one (6a): The synthesis of 6a was carried out as a one-pot reaction with
sequential addition of two different boronic acids. The first step (addition of
3a) was carried out at 100 °C (stirring for 10 h). The second step (addition of 3h
and of a fresh amount of catalyst) was carried out at 120 °C (stirring for 10 h).
Starting with 2 (150 mg, 0.3 mmol), 4-methoxyphenylboronic acid (3a, 46 mg,
0.3 mmol), Pd(PPh3)4 (2 Â 11 mg, 2 Â 3 mol %), K3PO4 (127 mg, 0.6 mmol), 1,4-
dioxane (5 mL), and 4-tert-butylphenylboronic acid (3h, 58 mg, 0.33 mmol), 6a
8. For reviews of cross-coupling reactions of polyhalogenated heterocycles, see:
(a) Schröter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245; (b) Schnürch, M.;
Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur. J. Org. Chem.
2006, 3283.
was isolated as
a
yellow solid (102 mg, 77%); mp 272–274 °C. 1H NMR
(300 MHz, CDCl3): d = 1.36 (s, 9H, 3CH3), 1.90–1.98 (m, 2H, CH2), 2.55 (t, 2H,
J = 6.7 Hz, CH2), 2.71 (t, 2H, J = 6.7 Hz, CH2), 3.83 (s, 3H, O CH3), 6.96 (d, 2H,
J = 8.8 Hz, ArH), 7.10 (d, 2H, J = 8.9 Hz, ArH), 7.16 (d, 2H, J = 8.9 Hz, ArH), 7.20–
7.38 (m, 3H, ArH), 7.45–7.53 (m, 3H, ArH). 13C NMR (75–5 MHz, CDCl3):
d = 22.7, 29.4 (CH2), 31.5 (3CH3), 34.7 (C), 40.9 (CH2), 55.3 (OCH3), 113.5, 125.4,
125.5, 126.4, 127.7, 128.5, 129.8, 130.3 (CH), 132.5, 132.6, 134.6, 136.0, 137.4,
~
9. For Suzuki-Miyaura reactions of bis(triflates) of benzene derivatives and other
arenes, see, for example: (a) Takeuchi, M.; Tuihiji, T.; Nishimura, J. J. Org. Chem.
1993, 58, 7388; (b) Sugiura, H.; Nigorikawa, Y.; Saiki, Y.; Nakamura, K.;
Yamaguchi, M. J. Am. Chem. Soc. 2004, 126, 14858; (c) Akimoto, K.; Suzuki, H.;
Kondo, Y.; Endo, K.; Akiba, U.; Aoyama, Y.; Hamada, F. Tetrahedron 2007, 63,
6887; (d) Akimoto, K.; Kondo, Y.; Endo, K.; Yamada, M.; Aoyama, Y.; Hamada, F.
Tetrahedron Lett. 2008, 49, 7361; (e) Hosokawa, S.; Fumiyama, H.; Fukuda, H.;
Fukuda, T.; Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007, 48, 7305; (f) Nawaz, M.;
Farooq Ibad, M.; Obaid-Ur-Rahman, A.; Khera, R. A.; Villinger, A.; Langer, P.
Synlett 2010, 150; (g) Mahal, A.; Villinger, A.; Langer, P. Synlett 2010, 1085.
10. Synthesis of 1-oxo-1,2,3,4-tetrahydroanthracene-9,10-diyl-bis(trifluoromethane-
sulfonate (2). To a solution of 1 (2.0 g, 8.8 mmol) in CH2Cl2 (88 mL) was added
pyridine (2.8 mL, 35.0 mmol) at 20 °C under an argon atmosphere. After
stirring for 10 min, Tf2O (3.5 mL, 21 mmol) was added at À78 °C. The mixture
was allowed to warm to 20 °C and was stirred overnight. The reaction mixture
was filtered and the filtrate was concentrated in vacuo. The residue was
purified by chromatography (flash silica gel, heptanes–EtOAc) without prior
aqueous work up to give 2 as a yellow solid (3.67 g, 85%), mp 162–164. 1H NMR
(300 MHz, CDCl3): d = 2.10–2.18 (m, 2H, CH2), 2.76 (t, 2H, J = 6.9 Hz, CH2), 3.15
(t, 2H, J = 6.4 Hz, CH2), 7.65–7.79 (m, 2H, ArH), 8.05 (d, 1H, J = 8.5 Hz, ArH), 8.18
(d, 1H, J = 8.5 Hz, ArH). 19F NMR (282.4 MHz, CDCl3): d = À72.56, À72.55. 13C
137.8, 141.6, 150.3, 158.5 (C), 200.2 (CO). IR (KBr):
v = 3064, 3042, 3000, 2956,
2899, 2865, 2833, 2252, 2142 (w), 1689 (m), 1608, 1573, 1553 (w), 1510 (m),
1493, 1459, 1440, 1410, 1395, 1373, 1365, 1349, 1327, 1315, 1304, 1284, 1269
(w), 1239 (s), 1224, 1174 (m), 1158, 1131, 1116, 1108, 1073 (w), 1030 (m),
1006, 971, 938, 926 (w), 912, 837 (m), 817, 803, 796 (w), 765, 726 (s), 692, 676,
646, 638, 619, 586 (w), 561, 543 (m) cmÀ1. GC/MS (EI, 70 eV): m/z (%) = 434
(M+, 100), 419 (11), 349 (14). HRMS (ESI+): calcd for C31H31O2: [M+H]+:
435.2319; found: 435.2312.
15. CCDC-800257 contains the supplementary crystallographic data for this Letter.
These data can be obtained free of charge from The Cambridge Crystallographic
16. For a simple guide for the prediction of the site-selectivity of palladium(0)
catalyzed cross-coupling reactions based on the 1H NMR chemical shift values,
see: Handy, S. T.; Zhang, Y. Chem. Commun. 2006, 299.