204
E. Mieczyn´ska et al. / Applied Catalysis A: General 393 (2011) 195–205
The Pd(0) nanoparticles supported on Al2O3 are spherical and
[5] J. Tsuji, New Perspectives for the 21st Century, 2nd ed., John Wiley and Sons
Ltd., 2004.
none of them show typical crystal outlines (Fig. 8a). They have sim-
ilar diameters (the maximum of the size distribution is located at
8.3 nm), do not indicate any aggregation and are quite uniformly
dispersed on the surface of the alumina support. The Pd(0) particles
obtained on the Al2O3–Fe2O3 support (Fig. 9a) are slightly larger
(the average size is 8.8 nm). However, most of them are aggre-
gates composed of several discernible particles in quasispherical
arrangements. For both of the supports the Pd(0) size distributions
are practically symmetric with FWHM of 4.3 and 4.8 nm, respec-
redispersion of the Pd(0) nanoparticles was observed. Contrast-
ingly, in the Heck reaction carried out in molten [nBu4N]Br the
change of the size of alumina-supported Pd(0) particles was very
significant [26]. This fact suggests that under the conditions chosen
in this work the process is more heterogeneous, although partici-
pation of soluble palladium forms cannot be ruled out.
Pd(II) precursors under the Heck reaction conditions. Thus obtained
particles are generally several nanometers larger (especially in case
of the Al2O3–Fe2O3 support) when compared to the Pd(0) cata-
lysts prepared by reduction with N2H4·H2O (Table 5). However, not
only is the average nanoparticle diameter larger but also there are
some more significant morphological differences. Pd(0) nanoparti-
cles obtained from the supported Pd(II) precursors (Figs. 8b and 9b)
are mostly characterized by very well defined geometrical shapes
with many corners and edges. Comparing to the Pd(0) catalysts,
it is clear from the histograms that the size distributions are also
broader, with less defined maxima and somewhat asymmetric,
shifted towards larger particles. Analogous effect is also observed
for the Pd catalysts supported on the Al2O3–CeO2 mixed oxide.
[6] M. Beller, C. Bolm (Eds.), Building Blocks and Fine Chemicals, Wiley-VCH, 2004.
[7] F. Alonso, I.P. Beletskaya, M. Yus, Tetrahedron 61 (2005) 11771–11835.
[8] A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 249 (2005) 2308–2322.
[9] A.F. Littke, G.C. Fu, Angew. Chem. Int. 41 (2002) 4176–4211.
[10] L.X. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133–173.
[11] M. Weck, C.W. Jones, Inorg. Chem. 46 (2007) 1865–1875.
[12] A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 251 (2007) 1281–1293.
[13] D. Astruc, Inorg. Chem. 46 (2007) 1884–1894.
[14] K. Köhler, W. Kleist, S.P. Prockl, Inorg. Chem. 46 (2007) 1876–1883.
[15] C. Luo, Y. Zhang, Y. Wang, J. Mol. Catal. A: Chem. 229 (2005) 7–12.
[16] A. Gniewek, A.M. Trzeciak, J.J. Ziółkowski, L. Ke˛pin´ ski, J. Wrzyszcz, W. Tylus, J.
Catal. 229 (2005) 332–343.
[17] I. Pryjomska-Ray, A.M. Trzeciak, J.J. Ziółkowski, J. Mol. Catal. A: Chem. 257
(2006) 3–8.
[18] A.H.M. de Vries, J.M.C.A. Mulders, J.H.M. Mommers, H.J.W. Henderickx, J.G. de
Vries, Org. Lett. 5 (18) (2003) 3285–3288.
[19] J.G. De Vries, Dalton Trans. (2006) 421–429.
[20] S. Jansat, J. Durand, I. Favier, F. Malbosc, C. Pradel, E. Teuma, M. Gómez, Chem.
Catal. Chem. 1 (2009) 244–246.
[21] S. Klingelhofer, W. Heitz, A. Greier, S. Ostreich, S. Forster, M. Antonietti, J. Am.
Chem. Soc. 119 (1997) 10116–10120.
[22] M. Poyatos, F. Marquez, E. Peris, C. Claver, E. Fernandez, New J. Chem. 27 (2003)
425–431.
[23] A. Molnar, A. Papp, Synlett (2006) 3130–3134.
[24] A. Papp, G. Galbacs, A. Molnar, Tetrahedron Lett. 46 (2005) 7725–7728.
[25] A. Biffis, M. Zecca, M. Basato, Eur. J. Inorg. Chem. (2001) 1131–1133.
[26] I. Pryjomska-Ray, A. Gniewek, A.M. Trzeciak, J.J. Ziółkowski, W. Tylus, Topics
Catal. 40 (2006) 173–184.
[27] S.S. Pröckl, W. Kleist, M.A. Gruber, K. Köhler, Angew. Chem. Int. 43 (2004)
1881–1882.
[28] W. Kleist, J.-K. Lee, K. Köhler, Eur. J. Inorg. Chem. (2009) 261–266.
[29] A. Cwik, Z. Hell, F. Figueras, Adv. Synth. Catal. 348 (2006) 523–530.
[30] L. Djakovitch, H. Heise, K. Köhler, J. Organomet. Chem. 584 (1999) 16–26.
[31] L. Djakovitch, K. Köhler, J. Am. Chem. Soc. 123 (2001) 5990–5999.
[32] M. Dams, L. Drijkoningen, B. Pauwels, G. Van Tendeloo, D.E. De Vos, P.A. Jakobs,
J. Catal. 209 (2002) 225–236.
[33] L. Djakovitch, M. Wagner, C.G. Hartung, M. Beller, K. Köhler, J. Mol. Catal. A:
Chem. 219 (2004) 121–130.
[34] S. Noël, C. Luo, C. Pinel, L. Djakovitch, Adv. Synth. Catal. 349 (2007) 1128–1140.
[35] K. Köhler, M. Wagner, L. Djakovitch, Catal. Today 66 (2001) 105–114.
[36] N. Cioffi, M. Faticanti, N. Ditaranto, S. De Rosi, L. Traversa, A. Monopoli, A. Nacci,
L. Torsi, L. Sabbatini, Curr. Nanosci. 3 (2007) 121–127.
[37] A. Monopoli, A. Nacci, V. Calo, F. Ciminale, P. Cotugno, A. Mangone, L.C. Gian-
nossa, P. Azzone, N. Cioffi, Molecules 15 (2010) 4525–5411.
[38] A. Wali, S. Muthukumaru Pillai, S. Satish, React. Kinet. Catal. Lett. 60 (1997)
189–194.
[39] S.S. Pröckl, W. Kleist, K. Köhler, Tetrahedron 61 (2005) 9855–9859.
[40] A. Wali, S.M. Pillai, V.K. Kaushik, S. Satish, Appl. Catal. A: Gen. 135 (1996) 83–93.
[41] L. Djakovitch, K. Köhler, J. Mol. Catal. A: Chem. 142 (1999) 275–284.
[42] A. Papp, K. Miklos, P. Forgo, A. Molnar, J. Mol. Catal. A: Chem. 229 (2005)
107–116.
[43] K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem.
Soc. 124 (2002) 11572–11573.
[44] B.M. Choudary, S. Mahdi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, J. Am. Chem.
Soc. 124 (2002) 14127–14136.
[45] V. Calo, A. Nacci, A. Monopoli, A. Fornaro, L. Sabbatini, N. Cioffi, N. Ditaranto,
Organometallics 23 (2004) 5154–5158.
[46] L. Huang, P.K. Wong, J. Tan, T.P. Ang, Z. Wang, J. Phys. Chem. C. 113 (2009)
10120–10130.
[47] V. Polshettiwar, A. Molnar, Tetrahedron Lett. 63 (2007) 6949–6976.
[48] V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev. 253 (2009) 2599–2626.
[49] R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, K. Köhler, J. Mol. Catal. A: Chem.
182–183 (2002) 499–509.
[50] K. Köhler, R.G. Heidenreich, J.G.E. Krauter, J. Pietsch, Chem. Eur. J. 8 (2002)
622–631.
4. Conclusions
Palladium catalysts supported on the alumina-based mixed
oxides have been used in the Heck reaction leading to mono- and
diarylated olefins. Their catalytic activity in the cross-coupling of
aryl halides with cinnamic ester or aldehyde is similar to that
reported for homogeneous systems with phosphane or tetraalky-
lammonium salt co-catalysts. Good-to-excellent yields of the
coupling products were obtained in 4 h, without any additives.
As confirmed by TEM studies, the supported Pd(II) was reduced
to Pd(0) during reaction forming nanoparticles that probably act
as catalytically active species. Although participation of soluble
palladium forms in the catalytic process cannot be excluded,
recyclability of the investigated systems was confirmed. Higher
palladium leaching was observed for Pd(II) than in case of the
immobilized Pd(0) catalysts, which often consist of nanoparticles
that are sterically constrained in the pores of the support [60]. The
high level of Pd leaching allows to predict that the catalysts studied
are not suitable for longer uses.
[51] F.Y. Zhao, B.M. Bhanage, M. Shirai, M. Arai, Chem. Eur. J. 5 (2000) 843–848.
[52] M. Seki, Synthesis (2006) 2975–2992.
[53] A. Nejjar, C. Pinel, L. Djakovitch, Adv. Synth. Catal. 345 (2003) 612–619.
[54] C. Gurtler, S.L. Buchwald, Chem. Eur. J. 5 (1999) 3107–3112.
[55] V. Calo, A. Nacci, A. Monopoli, S. Laera, N. Cioffi, J. Org. Chem. 68 (2003)
2929–2933.
Acknowledgements
[56] G. Zou, W. Huang, Y. Xiao, J. Tang, New J. Chem. 30 (2006) 803–809.
[57] L. Botella, C. Najera, J. Org. Chem. 70 (2005) 4360–4369.
[58] M. Beller, T.H. Riermeier, Tetrahedron Lett. 37 (1996) 6535–6538.
[59] M. Moreno-Mans, M. Perez, R. Pleixats, Tetrahedron Lett. 37 (1996) 7449–7452.
[60] A. Gniewek, J.J. Ziółkowski, A.M. Trzeciak, M. Zawadzki, H. Grabowska, J.
Wrzyszcz, J. Catal. 254 (2008) 121–130.
This work has been performed in a frame of COST D40 pro-
gramme and supported by the Polish Ministry of Science and Higher
Education (N164/COST/2008).
References
[61] S. Castillo, M. Morán-Pineda, R. Gómez, Catal. Commun. 2 (2001) 295–300.
[62] J. Wrzyszcz, M. Zawadzki, A.M. Trzeciak, W. Tylus, J.J. Ziółkowski, Catal. Lett. 93
(2004) 85–92.
[63] D. Enache, M. Roy-Auberger, K. Esterle, R. Revel, Colloids Surf. A: Physicochem.
Eng. Aspects 220 (2003) 223–233.
[1] I.P. Beletskaya, A.V. Cheprakov, Chem. Rev. 100 (2000) 3009–3066.
[2] N.T.S. Phan, M. Van der Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609–679.
[3] R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283–2321.
[4] W.A. Herrman, C. Brossmer, K. Ofele, C.P. Reisinger, T. Priermeier, M. Beller, H.
Fischer, Angew. Chem. Int. Ed. Engl. 34 (1995) 1844–1847.
[64] M. Ozawa, M. Kimura, J. Mater, Sci. Lett. 9 (1990) 291–293.
[65] M. Ozawa, M. Kimura, A. Isogai, J. Less-Common Metals 162 (1990) 297–308.