Substituents at the Sulfinyl Sulfur: Asymmetric Synthesis and
Biological Activities. J. Org. Chem. 2009 74, 6002 – 6009.
13. (a) Mukerjee, A. K.; Ashare, R. Isothiocyanates in the Chemistry
of Heterocycles. Chemistry Reviews 1991 91(1) 1-24. (b) Li, G.;
Tajima, H.; Ohtani, T. An Improved Procedure for the
Preparation of Isothiocyanates from Primary Amines by Using
Hydrogen Peroxide as the Dehydrosulfurization Reagent. J.
Org. Chem. 1997, 62, 4539-4540. (c) Wong, R.; Dolman, S. J.
Isothiocyanates from Tosyl Chloride Mediated Decomposition of
in Situ Generated Dithiocarbamic Acid Salts. J. Org. Chem.
2007, 72, 3969-3971. (d) Kim, S.; Yi, K.Y. 1,1’-Thiocarbonyldi-
2,2’-pyridone a new useful reagent for functional-group
conversions under essentially neutral conditions. J. Org.Chem.
1986 2613-2615.
14. Posner, G.H.; Cho, C-G; Green, J.V.; Zhang, Y.; Talalay, P.
Design and Synthesis of Bifunctional Isothiocyanate Analogs of
Su1foraphane: Correlation between Structure and Potency as
Inducers of Anticarcinogenic Detoxication Enzymes. J. Med.
Chem. 1994 37, 170-176
15. Wilson, A. J.; Kerns, J.K.; Callahan, J.F.; Moody, C.J. Keap
Calm, and Carry on Covalently J. Med Chem. 2013;56(19),7463-
76 and references therein.
16. Electrophilic tuning of the chemoprotective natural product
sulforaphane. Ahn, Y-H; Hwang, H.; Liu, H.; Wang, X.J.;
Zhankg, Y.; Stephenson, K.K.; Boronina, T.N.; Cole, R.N.;
Dinkova-Kostova, A.T.; Talalay, P.; Cole, P.A. PNAS 2010
107(21) 95(0-9595.
17. A listing of the structures of these 104 compounds with the
levels of HO-1 mRNA induced relative to SFN as well as TR-
FRET data for inhibition of Cul3 binding to Keap1 are in a table
attached to the Supplementary Materials. Except where noted on
the Supplementary Materials experimentals, these compounds
had good LC-MS data with LC purity ≥ 95% and 1H NMR data
consistent with the structures.
18. Poore, D. D., Hofmann, G., Wolfe III, L. A., Qi, H., Jiang, M.,
Fischer, M., Wu, Z., Sweitzer, T. D., Chakravorty, S., Donovan,
B., Li, H. Development of a High-Throughput Cul3-Keap1
Time-Resolved Fluorescence Resonance Energy Transfer (TR-
FRET) Assay for Identifying Nrf2 Activators. SLAS Discovery,
19. Baird, L., Dinkova-Kostova, A. T. Diffusion dynamics of the
Keap1-Cullin3 interaction in single live cells. Biochem. Biophys.
Res. Comm. 2013, 433 (1), 58-65.
20. Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.;
Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang,
J.; Friesner, R.A. Jaguar A high-performance quantum
chemistry software program with strengths in life and materials
sciences. Int. J. Quantum Chem., 2013, 113(18), 2110-2142.
21. Cleasby A., Yon J., Day P.J., Richardson C., Tickle I.J.,
Williams P.J., Callahan J.F., Carr R., Concha N., Kerns J.K., Qi
H., Sweitzer T., Ward P., Davies T.G. Structure of the BTB
Domain of Keap1 and Its Interaction with the Triterpenoid
Antagonist CDDO. PLOSONE
Acknowledgements
The authors would like to thank Nicole Goodwin for
providing scientific review and helpful suggestions.
GlaxoSmithKline provided funding to C.J. Moody and A.J.
Wilson.
References and notes
1. Boutten, A.; Goven, D.; Artaud-Macari, E.; Boczkowski, J.;
Bonay, M. NRF2 targeting: a promising therapeutic strategy in
chronic obstructive pulmonary disease. Trends in Molecular
Medicine 2011 17(7), 363 -371.
2. (a) Eggler, A.L.; Gay, K.A.; Mesecar;A.D; Molecular
mechanisms of natural products in chemoprevention: Induction
of cytoprotective enzymes by Nrf2. Mol. Nutr. Food Res. 2008,
52, S84 –S94; (b) Baird, L.; Dinkova-Kostova, A. T.; The
cytoprotective role of the Keap1-Nrf2 pathway Arch Toxicol
2011 85, 241 – 272; (c) Lu, M.C.; Ji, J.A.; Jiang, Z.Y.; You
Q.D.; The Keap1–Nrf2–ARE Pathway As a Potential Preventive
and Therapeutic Target: An Update. Med. Res. Rev., 2016, 36,
924–963.
3. An alternative to small molecule activation of the Nrf2 pathway
through covalent interaction with nucleophilic cysteines on the
Keap1 protein is through direct, non-covalent, competition with
Nrf2 binding to the KEAP1 Kelch domain. For example see:
Davies,T.G.; Wixted W.E., Coyle J.E., Griffiths-Jones C., Hearn
K., McMenamin R., Norton D., J. Rich S.J., Richardson C.,
Saxty G., Willems H.M.G., Woolford A.J-A., Cottom J.E., Kou
J-P., J.G., Feldser H.G., Sanchez Y., Foley J.P., Bolognese B.J.,
Logan G., Podolin P.L., Yan H., Callahan J.F., Heightman T.D.,
Kerns J.K., Monoacidic Inhibitors of the Kelch-like ECH-
Associated Protein 1: Nuclear Factor Erythroid 2-Related Factor
2 (KEAP1:NRF2) Protein–Protein Interaction with High Cell
Potency Identified by Fragment-Based Discovery. J. Med.
Chem. 2016 59(8) 3991–4006.
4. Zhang, D.D.; Lo, S-C.; Cross, J.V.; Templeton, D.J.; Hannick,
M. Keap1 Is a Redox-Regulated Substrate Adaptor Protein for a
Cul3-Dependent Ubiquition Ligase Complex. Mol. And Cell.
Biol. 2004 24(24) 10941 – 10953.
5. In this paper where the chiral, natural isomer of sulforaphane is
referred to, it will be referred to as “natural SFN”. Racemic
sulforaphane was used for testing, as a synthetic intermediate for
conversion to some analogs and for comparison with analogs.
The racemic sulforaphane will be denoted as SFN or 1 without
any further designation.
6. (a) Dinkova-Kostova1, A.T.; Kostov, R.V. Glucosinolates and
isothiocyanates in health and disease. Trends in Molecular
Medicine 2012 18(6) 337-347; (b) Wittstock, U.; Halkier, B.A.
Glucosinolate research in the Arabidopsis era. Trends in Plant
Science 2002 7(6) 263-270.
7. Fahey, J.W.; Talalay, P. Antioxidant Functions of Sulforaphane:
a Potent Inducer of Phase II Detoxication. Enzymes Food and
Chemical Toxicology 1999 37 973-979.
8. Egner, P. A.; Chen, J-G.; Zarth, A. T.; Ng, D. K.; Wang, J-B.;
Kensler, K. H.; Jacobson, L. P.; Munoz, A.; Johnson, J. L.;
Groopman, J. D. Rapid and Sustainable Detoxication of
Airborne Pollutants by Broccoli Sprout Beverage: Results of a
Randomized Clinical Trial in China. Cancer Prevention
Research 2014, 7(8), 813-823.
9. Doa, D.P.; Paib, S.B.; Rizvib, S.A.A.; D’Souza, M.J.
Development of sulforaphane-encapsulated microspheres for
cancer epigenetic therapy. International Journal of
Pharmaceutics 2010 386, 114–121.
22. Hu, C.; Eggler, A.L.; Mesecar, A.D.; van Breemen R.B.;
Modification of Keap1 Cysteine Residues by Sulforaphane.
Chem. Res. Toxicol. 2011 24, 515–521.
23. Bhattachar, S.N.; Wesley, J.A.; Seadeek, C. Evaluation of the
chemiluminescent nitrogen detector for solubility determinations
to support drug discovery. Journal of Pharmaceutical and
Biomedical Analysis 2006 41 152–157.
24. Calculated as described in Ertl P., Rohde B, Selzer P. Fast
calculation of molecular polar surface area as a sum of fragment-
based contributions and its application to the prediction of drug
transport properties. J Med Chem. 2000 43(20), 3714-3717,
using software available through Chemaxon
10. Danafar H.; Sharafi A.; Manjili H.K.; Andalib S. Sulforaphane
delivery using mPEG–PCL co-polymer nanoparticles to breast
cancer cells. Pharmaceutical Development and Technology
2017 22(5), 642-651.
11. U.S. Patent US7879822 (Stabilized Sulforaphane A method of
stabilizing sulforaphane is provided. The method includes
contacting sulforaphane, or an analog thereof, and a cyclodextrin
to form a complex between the sulforaphane, or analog thereof,
and the cyclodextrin.). U.S. Patent US20130143963
25. Augustijns, P.; Wuyts, B.; Hens, B.; Annaert, P.; Butler, J.;
Brouwers, J. A review of drug solubility in human intestinal
fluids: Implications for the prediction of oral absorption.
European Journal of Pharmaceutical Sciences 2014 57 322–332.
And references therein.
26. Shultz, M.D. Setting expectations in molecular optimizations:
Strengths and limitations of commonly used composite
parameters. Biorg. and Med. Chem. Let. 2013 23, 5980-5991.
27. Young, R.J.; Green, D.V.S.; Luscombe, C.N.; Hill, A.P. Getting
physical in drug discovery II: the impact of chromatographic
hydrophobicity measurements and aromaticity. Drug Discovery
Today 2011 16( 17/18 ) 822 - 830.
12. Khiar, N.; Werner, S.; Mallouk,S.; Lieder,F.; Alcudia, A.;
Fernandez,I. Enantiopure Sulforaphane Analogues with Various
15