J. Am. Chem. Soc. 2001, 123, 7859-7865
7859
Conformational Switching and Exciton Interactions in
Hemicyanine-Based Bichromophores
S. Zeena and K. George Thomas*
Contribution from the Photochemistry Research Unit, Regional Research Laboratory (CSIR),
TriVandrum 695 019, India
ReceiVed January 23, 2001. ReVised Manuscript ReceiVed May 17, 2001
Abstract: Conformational changes in two hemicyanine-based bichromophores were demonstrated by varying
the polarity as well as temperature of the medium. Dramatic changes in the ground and excited singlet state
properties were observed upon folding of the bichromophores, due to the formation of intramolecular aggregates
of H-type. These aspects were studied, in detail, using steady-state absorption and time-resolved fluorescence
spectroscopy. Time-resolved fluorescence studies indicate that both the bichromophores exhibit a monoex-
ponential decay, with a short lifetime, in mixed toluene-CH2Cl2 solvents having lower proportions of toluene.
Interestingly, biexponential decay with short and long-lived species was observed at higher proportions of
toluene, due to the presence of unfolded and folded forms. Folding results in the intramolecular stacking of
the chromophores which restrict their torsional dynamics, leading to a longer lifetime. Upon laser excitation,
the folded form of the bichromophore undergoes rapid conformational changes, due to photoinduced thermal
dissociation.
Introduction
phenylacetylene-based oligomers into ordered helical structures7
and (ii) the donor-acceptor interaction of aromatic groups,
leading to pleated structures.8 Conformational changes and
molecular motions in photoactive molecular and supramolecular
systems can be modulated by chemical, photochemical, or
electrochemical methods.1,2 Such changes when translated to
optical as well as electronic properties can form the basis of
switching devices.1 We have now designed two nonconjugated
bichromophores (1 and 2 in Scheme 1), which can fold and
unfold by varying the solvent polarity or by the application of
external stimuli such as heat or light.
Earlier studies on nonconjugated bichromophores of cya-
nines,12 squaraines,13 and porphyrins14 mainly deal with the
interaction between the chromophores. In contrast with aromatic
compounds which form molecular associates in their excited
states (e.g., pyrene15), chromophoric dyes have a unique ability
to self-organize into aggregates in their ground state. Interaction
between the chromophores in their ground state has been fairly
well explained by McRae and Kasha16a in terms of exciton
coupling theory, in which the excited state of the dye aggregate
splits into two energy levels (Davydov splitting). The transition
to the upper excited state is allowed in the case of face-to-face
The design and study of molecular as well as supramolecular
photoactive systems have been actively pursued in recent years,
due to their potential applications in optoelectronic devices1-6
(for e.g., molecular switches,2-4 sensors,3 transducers,5 and
information processing and storage devices6). Of particular
interest is the design of molecular systems which undergo
conformational changes,7-9 analogous to the folding of pro-
teins.10 Synthetic molecular systems and polymers which can
fold into well-defined conformation in solution (foldamers11),
through noncovalent interactions, have been reported. These
include (i) solvophobically driven conformational folding of
* Address correspondence to this author: (phone) 91-471-515249; (fax)
91-471-490186; (e-mail) georgetk@md3.vsnl.net.in.
(1) (a) Lehn, J.-M. Supramol. Photochem.: Concepts PerspectiVes 1995.
(b) Balzani, V.; Moggi, L.; Scandola, F. In Supramolecular Photochemistry;
Balzani, V., Ed.; Reidel: Dordrecht, The Netherlands, 1987; pp 1-28. (c)
Molecular Electronics; Jortner, J., Ratner, M., Eds.; Blackwell: Oxford,
UK, 1997.
(2) (a) Irie, M. Chem. ReV. 2000, 100, 1685. (b) Credi, A.; Raymo, F.
M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000, 39, 3348.
(3) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. ReV. 1997,
97, 1515. (b) Fabbrizzi, L.; Poggi, A. Chem. Soc. ReV. 1995, 24, 197.
(4) (a) de Silva, A. P.; McClenaghan, N. D. J. Am. Chem. Soc. 2000,
122, 3965. (b) de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999,
121, 1393. (c) Rathore, R.; Magueres, P. L.; Lindeman, S. V.; Kochi, J. K.
Angew. Chem., Int. Ed. 2000, 39, 809. (d) Ashton, P. R.; Balzani, V.; Becher,
J.; Credi, A.; Fyfe, M. C. T.; Mattersteig, G.; Menzer, S.; Nielsen, M. B.;
Raymo, F. M.; Stoddart, J. F.; Venturi, M.; Williams, D. J. J. Am. Chem.
Soc. 1999, 121, 3951. (e) Fernasndez-Acebes, A.; Lehn, J. M. Chem. Eur.
J. 1999, 5, 3285. (f) Zahn, S.; Canary, J. W. Angew. Chem., Int. Ed. Engl.
1998, 37, 305.
(7) (a) Kilbinger, A. F. M.; Schenning, A. P. H. J.; Goldoni, F.; Feast,
W. J.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 1820. (b) Gin, M. S.;
Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121,
2643. (c) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.
Chem., Int. Ed. 2000, 39, 228. (d) Nelson, J. C.; Saven, J. G.; Moore, J. S.;
Wolynes, P. G. Science 1997, 277, 1793.
(8) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303. (b) Zych, A.
J.; Iverson, B. L. J. Am. Chem. Soc. 2000, 122, 8898.
(9) (a) Recker, J.; Tomcik, D. J.; Parquette, J. R. J. Am. Chem. Soc.
2000, 122, 10298. (b) Sakamoto, S.; Obataya, I.; Ueno, A.; Mihara, H.
Chem. Commun. 1999, 1111. (c) Fletcher, N. C.; Ward, M. D.; Encinas,
S.; Armaroli, N.; Flamigni, L.; Barigelletti, F. Chem. Commun. 1999, 2089.
(d) Valeur, B.; Pouget, J.; Bourson, J.; Kaschke, M.; Ernsting, N. P. J.
Phys. Chem. 1992, 96, 6545.
(10) (a) Seebach, D.; Matthews, J. Chem. Commun. 1999, 2015. (b)
Gruebele, M.; Sabelko, J.; Ballew, R.; Ervin, J. Acc. Chem. Res. 1998, 31,
699.
(5) Krauss, R.; Weinig, H.; Seydack, M.; Bendig, J.; Koert, U. Angew.
Chem., Int. Ed. 2000, 39, 1835.
(6) (a) Kawata, S.; Kawata, Y. Chem. ReV. 2000, 100, 1777. (b) Gryko,
D. T.; Clausen, C.; Roth, K. M.; Dontha, N.; Bocian, D. F.; Kuhr, W. G.;
Lindsey, J. S. J. Org. Chem. 2000, 65, 7345. (c) Li, J.; Gryko, D.; Dabke,
R. B.; Diers, J. R.; Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem.
2000, 65, 7379. (d) Brown, C. L.; Jonas, U.; Preece, J. A.; Ringsdorf, H.;
Seitz, M.; Stoddart, J. F. Langmuir 2000, 16, 1924.
(11) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
10.1021/ja010199v CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/24/2001