ORGANIC
LETTERS
2011
Vol. 13, No. 5
992–994
Facile Synthesis of (E)-Alkenyl
Aldehydes from Allyl Arenes or Alkenes
via Pd(II)-Catalyzed Direct Oxygenation of
Allylic C-H Bond
Huoji Chen, Huanfeng Jiang,* Congbi Cai, Jia Dong, and Wei Fu
School of Chemistry and Chemical Engineering, South China University of Technology,
Guangzhou 510640, P. R. China
Received December 14, 2010
ABSTRACT
Palladium-catalyzed oxygenation of allyl arenes or alkenes has been developed to produce (E)-alkenyl aldehydes with high yields. Allylic C-H
bond cleavages occur under the mild conditions during this process. Mechanistic studies show that oxygen source is water.
Transition-metal-catalyzed sequential oxidative clea-
vage and functionalization of an allylic C-H bond has
been an important methodology for the direct installation
of functionality into hydrocarbon frameworks.1 The prac-
tical utility of such processes for complex molecule synth-
esis is governed by their ability to operate with predictable
and high levels of chemo-, stereo-, and regioselectivity as
well as site selectivity. The strategic application of selective
C-H oxidation and functionalization reactions at late
stages of syntheses has been demonstrated to increase
product diversity.2
Recently, White,3 Shi,4 Ishii,5 and Liu6 made significant
progress in the allylic C-O/C-N/C-C formation via
Pd(II)-catalyzed C-H activation (eq 1). An allyl-palla-
dium species was proposed as the key intermediate in these
processes. To the best of our knowledge, direct oxygena-
tion of an allylic C-H bond via Pd-catalysis using H2O as
a nucleophilic reagent has not been disclosed to date.
˚
(1) (a) Hansson, S.; Heumann, A.; Rein, T.; Akermark, B. J. Org.
Chem. 1990, 55, 975. (b) Heumann, A.; Reglier, M.; Waegell, B. Angew.
˚
Chem., Int. Ed. 1982, 21, 366. (c) Heumann, A.; Akermark, B. Angew.
Chem., Int. Ed. 1984, 23, 453. (d) McMurry, J. E.; Kocovsky, P.
˚
Tetrahedron Lett. 1984, 25, 4187. (e) Akermark, B.; Larsson, E. M.;
Oslob, J. D. J. Org. Chem. 1994, 59, 5729. (f) Macsari, I.; Szabo, K. J.
Tetrahedron Lett. 1998, 39, 6345. (g) Yu, J.-Q.; Corey, E. J. J. Am. Chem.
Soc. 2003, 125, 3232. (h) Mitsudome, T.; Umetani, T.; Nosaka, N.;
Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew Chem., Int. Ed.
2006, 45, 481. Angew. Chem. 2006, 118, 495. (i) Chen, M. S.; White,
M. C. J. Am. Chem. Soc. 2004, 126, 1346. (j) Chen, M. S.; Prabagaran,
N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (k)
Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7,
223.
On the other hand, few examples reported the synthesis
of alkenyl aldehydes from allyl arenes or alkenes.7 And
(2) Chen, M. S.; White, M. C. Science 2007, 318, 783.
(3) (a) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316.
(b) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
(c) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076. (d)
Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 9032. (e) Chen, M. S.; Prabagaran, N.; Labenz,
N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (f) Fraunhoffer,
K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223. (g) Chen,
M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346. (h) Reed, S. A.;
Mazzotti, A. R; White, M. C. J. Am. Chem. Soc. 2009, 131, 11701.
(4) Lin, S.; Song, C. X.; Cai, G. X.; Wang, W. H.; Shi, Z. J. J. Am.
Chem. Soc. 2006, 130, 12901.
(5) Shimizu, Y.; Obora, Y.; Ishii, Y. Org. Lett. 2010, 12, 1372.
(6) (a) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733.
(b) Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 11978.
(7) (a) Muzart, J. Tetrahedron Lett. 1987, 28, 4665. (b) Uemura, S.;
Patil, S. R. Tetrahedron Lett. 1982, 23, 4353. (c) Rav-Acha, C.; Choshen,
E.; Sarel, S. Helv. Chim. Acta 1986, 69, 1728.
r
10.1021/ol1030316
Published on Web 02/04/2011
2011 American Chemical Society