The Journal of Organic Chemistry
ARTICLE
by silica gel column (3% EtOAc in toluene), 4h (139 mg, 44%) as a red/
brown oil. Method B gave 4h (170 mg, 54%): Rf 0.57 (30% EtOAc in
toluene); IR νmax(film)/cm-1 2978, 2927, 1743, 1711, 1502, 1478,
1436, 1366; NMR δH (400 MHz, CDCl3) 1.42 (9H, s), 3.00 (1H, dd, J =
13.9, 6.0 Hz), 3.12 (1H, dd, J = 13.9, 5.6 Hz), 3.73 (3H, s), 4.57 (1H, dd,
J = 13.9, 6.0 Hz), 5.00 (1H, d, J = 7.3 Hz), 6.98-7.03 (1H, m), 7.11 (1H,
s), 7.22 (2H, d, J = 5.0 Hz); NMR δC (101 MHz, CDCl3) 28.3, 38.1,
52.3, 54.3, 80.1, 127.2, 127.5, 129.5, 129.8, 134.3, 138.2, 172.0, one
quaternary carbon not observed; [R]22D 59.4 (c 1.01, CHCl3); MS m/z
(ES) found 314.1171, C15H21NO4Cl requires MHþ 314.1159.
þ48.5 (c 1.03, CHCl3); MS m/z (ES) found 332.1057, C15H20NO4ClF
requires MHþ 332.1065.
’ ASSOCIATED CONTENT
S
Supporting Information. Details of calculated coordi-
b
nates of all reported structures; additional figure S1; ESI-MS
spectrum of the TMEDA cation 3; assignment of peaks to
individual stretching modes in the calculated spectra for cation
3, with axial (Table 5) and equatorial (Table 6) ester groups.
Comparison of NMR chemical shift for the diastereotopic
protons of new substituted phenylalanine derivatives (Table
7), tabulated specific rotations for new phenylalanine derivatives
in CHCl3 (Table 8), experimental for known compounds, and
1H and 13C NMR spectra for compounds 4g-i,k-m and 5. This
information is available free of charge via the Internet at http://
pubs.acs.org.
(S)-Methyl 2-(tert-Butoxycarbonylamino)-3-(3,5-difluoro-
phenyl)propanoate, 4i. Following general cross-coupling, method
A using 3,5-difluoroiodobenzene (240 μL, 2 mmol) gave, after purifica-
tion by silica gel column (5% EtOAc in toluene) 4i (129 mg, 41%) as a
red/pink solid. Method B gave 4i (170 mg, 54%): mp 78-80 °C; Rf 0.63
(30% EtOAc in toluene); IR νmax(film)/cm-1 2980, 1743, 1703, 1626,
1596, 1500, 1461, 1438, 1367; NMR δH (400 MHz, CDCl3) 1.41 (9H,
s), 2.99 (1H, dd, J = 13.1, 6.8 Hz), 3.12 (1H, dd, J = 13.8, 5.5 Hz), 3.73
(3H, s), 4.56 (1H, dd, J = 13.4, 6.1 Hz), 5.07 (1H, d, J = 7.4 Hz), 6.60-
6.75 (3H, m); NMR δC (101 MHz, CDCl3) 28.2, 38.1, 52.4, 54.1, 80.2,
102.5 (t, J = 25 Hz), 112.2 (d, J = 13 Hz), 140.0 (t, J = 9 Hz), 155.0, 162.9
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: r.f.w.jackson@sheffield.ac.uk.
(dd, J = 249, 13 Hz), 171.7; [R]22 þ40.4 (c 0.99, CHCl3); MS m/z
D
(ES) found 316.1372, C15H20NO4F2 requires MHþ 316.1360.
(S)-Methyl 2-(tert-Butoxycarbonylamino)-3-(4-(trifluoro-
methyl)phenyl)propanoate, 4k. Following general cross cou-
pling method A using 4-iodobenzotrifluoride (294 μL, 2 mmol) gave,
after purification by silica gel column (5% EtOAc in toluene), 4k (146
mg, 42%) as a pink/red solid. Method B gave 4k (147 mg, 42%): mp
78-80 °C; Rf 0.62 (30% EtOAc in toluene); IR νmax(film)/cm-1 2980,
1743, 1703, 1500, 1438, 1367; NMR δH (400 MHz, CDCl3) 1.42 (9H,
s), 3.09 (1H, dd, J = 13.7, 6.4 Hz), 3.22 (1H, dd, J = 13.6, 5.6 Hz), 3.74
(3H, s), 4.64 (1H, dd, J = 13.7, 6.3 Hz), 5.06 (1H, d, J = 7.7 Hz), 7.27
(2H, d, J = 7.9 Hz), 7.56 (2H, d, J = 8.0 Hz); NMR δC (101 MHz,
CDCl3) 28.2, 38.3, 52.4, 54.2, 80.2, 125.4, 129.7, 140.3, 155.0, 171.9, two
quaternary carbon signals not observed; [R]22D þ28.3 (c 1.06, CHCl3);
MS m/z (ES) found 348.1417, C16H21NO4F3 requires MHþ 348.1423.
(S)-Methyl 2-(tert-Butoxycarbonylamino)-3-(3,4-difluoro-
phenyl)propanoate, 4l. Following general cross-coupling, method
A using 3,4-difluoroiodobenzene (241 μL, 2 mmol) gave, after purifica-
tion by silica gel column (5% EtOAc in toluene), 4l (161 mg, 51%) as a
red/brown oil, which solidified on standing. Method B gave 4l (166 mg,
53%): mp 49-51 °C; Rf 0.59 (30% EtOAc in toluene); IR νmax(film)/
cm-1 2978, 2926, 1743, 1700, 1610, 1518, 1436, 1366; NMR δH (400
MHz, CDCl3) 1.42 (9H, s), 2.98 (1H, dd, J = 14.1, 6.2 Hz), 3.10 (1H, dd,
J = 14.1, 5.4 Hz), 3.73 (3H, s), 4.55 (1H, dd, J = 13.4, 6.0 Hz), 5.02 (1H,
d, J = 7.3 Hz), 6.80-6.87 (1H, m), 6.90-6.98 (1H, m), 7.07 (1H, m);
NMR δC (101 MHz, CDCl3) 28.3, 37.6, 52.4, 54.3, 80.2, 117.2 (d, J = 17
Hz), 118.2 (d, J = 17 Hz), 125.3 (dd, J = 5, 3 Hz), 133.1, 148.6 (dd, J = 58,
13 Hz), 151.1 (dd, J = 58, 13 Hz), 155.0, 171.9; [R]22D þ59.1 (c 1.02,
CHCl3); MS m/z (ES) found 316.1369, C15H20NO4F2 requires MHþ
316.1360.
’ ACKNOWLEDGMENT
M.S. and F.D. thank Dr. Britta Redlich (FOM Institute) for
assistance and the German Science Foundation (DFG) and the
European Community for funding (FP7/2007-2013; grant no.
226716). We also thank the EPSRC for a DTA studentship (A.J.
R.), Umicore for supplying nano zinc (Nozip), and Professor B.
H. Lipshutz for helpful advice.
’ REFERENCES
(1) Dreiocker, F.; Oomens, J.; Meijer, A. J. H. M.; Pickup, B. T.;
Jackson, R. F. W.; Sch€afer, M. J. Org. Chem. 2010, 75, 1203–1213.
(2) Polfer, N. C.; Oomens, J. Mass Spectrom. Rev. 2009, 28, 468–494.
(3) MacAleese, L.; Maitre, P. Mass Spectrom. Rev. 2007, 26, 583–605.
(4) Fleckenstein, J. E.; Koszinowski, K. Chem.—Eur. J. 2009, 15,
12745–12753.
(5) Koszinowski, K.; B€ohrer, P. Organometallics 2009, 28, 771–779.
(6) Koszinowski, K.; B€ohrer, P. Organometallics 2009, 28, 100–110.
(7) Di Marco, V. B.; Bombi, G. G. Mass Spectrom. Rev. 2006, 25,
347–379.
(8) Caggiano, L.; Jackson, R. F. W.; Meijer, A.; Pickup, B. T.;
Wilkinson, K. A. Chem.—Eur. J. 2008, 14, 8798–8802.
(9) Krasovskiy, A.; Duplais, C.; Lipshutz, B. H. J. Am. Chem. Soc.
2009, 131, 15592–15593.
(10) Duplais, C.; Krasovskiy, A.; Wattenberg, A.; Lipshutz, B. H.
Chem. Commun 2010, 46, 562–564.
(11) Lipshutz, B. H.; Abela, A. R.; Boskovic, Z. V.; Nishikata, T.;
Duplais, C.; Krasovskiy, A. Top. Catal. 2010, 53, 985–990.
(12) Rilatt, I.; Caggiano, L.; Jackson, R. F. W. Synlett 2005, 2701–2719.
(13) Ross, A. J.; Lang, H. L.; Jackson, R. F. W. J. Org. Chem. 2010, 75,
245–248.
(14) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc.
2009, 131, 16346–16347.
(15) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553–566.
(16) Irikura, K. K.; Johnson, R. D.; Kacker, R. N. J. Phys. Chem. A
2005, 109, 8430–8437.
(17) Foresman, J. B.; Frisch, A. E. Exploring Chemistry with Electronic
Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.
(18) Bythell, B. J.; Dain, R. P.; Curtice, S. S.; Oomens, J.; Steill, J. D.;
Groenewold, G. S.; Paizs, B.; Van, S. M. J. J. Phys. Chem. A 2010, 114,
5076–5082.
(S)-Methyl 2-(tert-Butoxycarbonylamino)-3-(3-chloro-4-
fluorophenyl)propanoate, 4m. Following general cross-coupling,
method A using 3 chloro-4-fluoroiodobenzene (255 μL, 2 mmol) gave,
after purification by silica gel column (5% EtOAc in toluene)m 4m (149
mg, 45%) as a red/brown oil, which solidified on standing. Method B
gave 4m (154 mg, 46%): mp 53-55 °C; Rf 0.63 (30% EtOAc in
toluene); IR νmax(film)/cm-1 2979, 1743, 1702, 1500, 1437, 1366;
NMR δH (400 MHz, CDCl3) 1.41 (9H, s), 2.96 (1H, dd, J = 13.9, 6.2
Hz), 3.10 (1H, dd, J = 13.9, 5.5 Hz), 3.72 (3H, s), 4.54 (1H, dd, J = 13.5,
6.1 Hz), 5.04 (1H, d, J = 7.5 Hz), 6.95-7.01 (1H, m), 7.05 (1H, t, J = 8.6
Hz), 7.12-7.20 (1H, m); NMR δC (101 MHz, CDCl3) 28.3, 37.4, 52.4,
54.3, 80.2, 116.6 (d, J = 21 Hz), 120.8 (d, J = 17 Hz), 129.0 (d, J = 7 Hz),
131.4, 133.3 (d, J = 4 Hz), 155.0, 157.3 (d, J = 248 Hz), 171.9; [R]22
D
1733
dx.doi.org/10.1021/jo102334c |J. Org. Chem. 2011, 76, 1727–1734