Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Determination of Absolute Configuration of 3a
’ REFERENCES
(1) Chiral organometallics: (a) Hoffmann, R. W. Chem. Soc. Rev.
2003, 32, 225. (b) Marshall, J. A. J. Org. Chem. 2007, 72, 8153.
(c) Crudden, C. M.; Glasspoole, B. W.; Lata, C. J. Chem. Commun.
2009, 6704.
(2) Chiral organolithiums: (a) Clayden, J. Organolithiums: Selectivity
for Synthesis; Pergamon: Amsterdam, The Netherlands, 2002; Chapters
5 and 6. (b) Hodgson, D. M. Organolithiums in Enantioselective Synthesis;
Springer: Berlin, Germany, 2003. (c) Hoppe, D.; Hense, T. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2282. (d) Basu, A.; Thayumanavan, S.
Angew. Chem., Int. Ed. 2002, 41, 716. (e) Beak, P.; Anderson, D. R.;
Curtis, M. D.; Laumer, J. M.; Pippel, D. J.; Weisenburger, G. A. Acc.
Chem. Res. 2000, 33, 715. (f) Lee, W. K.; Park, Y. S.; Beak, P. Acc. Chem.
Res. 2009, 42, 224.
product 4a was obtained in a high yield (91%) with a high
selectivity (91% ec). In contrast, the reaction using a batch macro
reactor (reaction time: 25 s, T = -78 °C) gave 4a in 99% yield
with a low selectivity (61% ec). Batch reactions under several
conditions also led to low ec (See SI for details). These results
show that a flow microreactor system is a powerful tool for
enantioselective reactions.
(3) Enantioselective transformations could be sometimes achieved
by dynamic kinetic resolution. Beak, P.; Basu, A.; Gallagher, D. J.; Park,
Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552.
(4) Microreactor: (a) Fletcher, P. D. I.; Haswell, S. J.; Pombo-Villar,
E.; Warrington, B. H.; Watts, P.; Wong, S. Y. F.; Zhang, X. Tetrahedron
2002, 58, 4735. (b) J€ahnisch, K.; Hessel, V.; L€owe, H.; Baerns, M. Angew.
Chem., Int. Ed. 2004, 43, 406. (c) Kiwi-Minsker, L.; Renken, A. Catal.
Today 2005, 110, 2. (d) Doku, G. N.; Verboom, W.; Reinhoudt, D. N.;
van den Berg, A. Tetrahedron 2005, 61, 2733. (e) Watts, P.; Haswell, S. J.
Chem. Soc. Rev. 2005, 34, 235. (f) Geyer, K.; Codee, J. D. C.; Seeberger,
P. H. Chem.-Eur. J. 2006, 12, 8434. (g) Whitesides, G. Nature 2006,
442, 368. (h) deMello, A. J. Nature 2006, 442, 394. (i) Song, H.; Chen,
D. L.; Ismagilov, R. F. Angew. Chem., Int. Ed. 2006, 45, 7336.
(j) Kobayashi, J.; Mori, Y.; Kobayashi, S. Chem. Asian J. 2006, 1, 22.
(k) Brivio, M.; Verboom, W.; Reinhoudt, D. N. Lab Chip 2006, 6, 329.
(l) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade,
D. T. Chem. Rev. 2007, 107, 2300. (m) Ahmed-Omer, B.; Brandtand,
J. C.; Wirth, T. Org. Biomol. Chem. 2007, 5, 733. (n) Watts, P.; Wiles, C.
Chem. Commun. 2007, 443. (o) Fukuyama, T.; Rahman, M. T.; Sato, M.;
Ryu, I. Synlett 2008, 151. (p) Yoshida, J.; Nagaki, A.; Yamada, T. Chem.-
Eur. J. 2008, 14, 7450. (q) Lin, W.; Wang, Y.; Wang, S.; Tseng, H. Nano
Today 2009, 4, 470. (r) McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal.
Chem. 2010, 3, 19.
Reactions with various electrophiles were examined under the
optimized conditions, and the results are summarized in Table 2.
Chlorotrimethylsilane, tributylchlorostannane, benzophenone,
and phenyl isocyanate were effective as electrophiles and gave
the corresponding allenes (4d, 4f-4h) with a high enantioselec-
tivity. The reactions of 2a with other organolithium compounds,
such as hexyllithium (HexLi) and ethyllithium (EtLi), and the
reactions of other conjugated enynes bearing a carbamoyloxy
group (2d and 2e) were also examined, and the corresponding
products (4i-4o) were obtained in good yields and high
enantioselectivity.
The absolute configuration of the major stereoisomer of 4e,
which was obtained from 2a and 4,40-dibromobenzophenone,
was determined as R using X-ray analysis employing an anom-
alous dispersion technique. Since the similar propargyllithium/
1a complex has been shown to proceed in an anti-SE0 manner,20
the absolute configuration of the organolithium intermediate 3a
was estimated to be S (Scheme 1).
(5) Asymmetric synthesis in microreactor: (a) Wiles, C.; Watts, P.;
Haswell, S. J.; Pombo-Villar, E. Lab Chip 2004, 4, 171. (b) J€onsson, C.;
Lundgren, S.; Haswell, S. J.; Moberg, C. Tetrahedron 2004, 60, 10515.
(c) de Bellefon, C.; Lamouille, T.; Pestre, N.; Bornette, F.; Pennemann,
H.; Neumann, F.; Hessel, V. Catal. Today 2005, 110, 179. (d) Hamberg,
A.; Lundgren, S.; Wingstrand, E.; Moberg, C.; Hult, K. Chem.-Eur. J.
2007, 13, 4334. (e) Sakeda, K.; Wakabayashi, K.; Matsushita, Y.;
Ichimura, T.; Suzuki, T.; Wada, T.; Inoue, Y. J. Photochem. Photobiol.,
A 2007, 192, 166. (f) Solodenko, W.; Jas, G.; Kunz, U.; Kirschning, A.
Synthesis 2007, 583. (g) Mak, X. Y.; Laurino, P.; Seeberger, P. H. Beilstein
J. Org. Chem. 2009, 5, No19.
In conclusion, we have developed a method for asymmetric
synthesis based on suppressing the epimerization of a config-
urationally unstable chiral organolithium intermediate based on
high-resolution control of the residence time using a flow
microreactor system. Enantioenriched allenes were synthesized
from the asymmetric carbolithiation of conjugate enynes using
this method, demonstrating its potential. Thus, our method adds
a new dimension to asymmetric synthesis.
(6) Recent examples: (a) de Bellefon, C.; Tanchoux, N.; Cara-
vieilhes, S.; Grenouillet, P.; Hessel, V. Angew. Chem., Int. Ed. 2000,
39, 3442. (b) Watts, P.; Wiles, C.; Haswell, S. J.; Pombo-Villar, E.;
Styring, P. Chem. Commun. 2001, 990. (c) Hisamoto, H.; Saito, T.;
Tokeshi, M.; Hibara, A.; Kitamori, T. Chem. Commun. 2001, 2662.
(d) Suga, S.; Okajima, M.; Fujiwara, K.; Yoshida, J. J. Am. Chem. Soc.
2001, 123, 7941. (e) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E.
Chem. Commun. 2002, 1034. (f) Fukuyama, T.; Shinmen, M.; Nishitani,
S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691. (g) Ueno, M.; Hisamoto, H.;
Kitamori, T.; Kobayashi, S. Chem. Commun. 2003, 936. (h) Garcia-
Egido, E.; Spikmans, V.; Wong, S. Y. F.; Warrington, B. H. Lab Chip
2003, 3, 73. (i) Lai, S. M.; Martin-Aranda, R.; Yeung, K. L. Chem.
Commun. 2003, 218. (j) Mikami, K.; Yamanaka, M.; Islam, M. N.;
Kudo, K.; Seino, N.; Shinoda, M. Tetrahedron Lett. 2003, 44, 7545.
(k) Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.;
Kitamori, T.; Kobayashi, S. Science 2004, 304, 1305. (l) Nagaki, A.;
Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J. J. Am.
Chem. Soc. 2004, 126, 14702. (m) Kawaguchi, T.; Miyata, H.; Ataka, K.;
Mae, K.; Yoshida, J. Angew. Chem., Int. Ed. 2005, 44, 2413. (n) Lee, C.-C.;
et al. Science 2005, 310, 1793. (o) Ducry, L.; Roberge, D. M. Angew.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures,
b
spectroscopic data of compounds, and complete ref 6n. This
acs.org.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This work was partially supported by the Grant-in-Aid for
Scientific Research. We thank Rigaku Corporation for the X-ray
analysis.
3746
dx.doi.org/10.1021/ja110898s |J. Am. Chem. Soc. 2011, 133, 3744–3747