Journal of the American Chemical Society
Page 12 of 14
(35) For an efficient method to prepare areneꢀNBE annulation products
Norbornene." J. Am. Chem. Soc. 2015, 137, 11574ꢀ11577; (b) Wang, P.;
with aryl bromides, see: Wu, X.; Zhou, J. "An efficient method for the
HeckꢀCatellani reaction of aryl halides." Chem. Commun. 2013, 49,
11035ꢀ11037.
(36) For selected reviews on aryl halide synthesis, see: Petrone, D. A.; Ye,
J.; Lautens, M. "Modern TransitionꢀMetalꢀCatalyzed Carbon–Halogen
Bond Formation." Chem. Rev. 2016, 116, 8003ꢀ8104.
(37) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M.
"Practical Aspects of Carbon−Carbon CrossꢀCoupling Reactions Using
Heteroarenes." Org. Process Res. Dev. 2010, 14, 30ꢀ47.
(38) For selected examples, see: (a) Handy, S. T.; Wilson, T.; Muth, A.
"Disubstituted Pyridines:ꢁ The DoubleꢀCoupling Approach." J. Org.
Chem. 2007, 72, 8496ꢀ8500; (b) Espino, G.; Kurbangalieva, A.; Brown, J.
M. "Aryl bromide/triflate selectivities reveal mechanistic divergence in
palladiumꢀcatalysed couplings; the SuzukiꢀMiyaura anomaly." Chem.
Commun. 2007, 1742ꢀ1744; (c) Lin, K.; Wiles, R. J.; Kelly, C. B.; Davies,
G. H. M.; Molander, G. A. "Haloselective CrossꢀCoupling via
Ni/Photoredox Dual Catalysis." ACS Catal. 2017, 7, 5129ꢀ5133.
(39) (a) Berman, A. M.; Johnson, J. S. "CopperꢀCatalyzed Electrophilic
Amination of Diorganozinc Reagents." J. Am. Chem. Soc. 2004, 126,
5680ꢀ5681; (b) Berman, A. M.; Johnson, J. S. "CopperꢀCatalyzed
Electrophilic Amination of Functionalized Diarylzinc Reagents." J. Org.
Chem. 2005, 70, 364ꢀ366.
(40) (a) Yoo, E. J.; Ma, S.; Mei, T.ꢀS.; Chan, K. S. L.; Yu, J.ꢀQ. "Pdꢀ
Catalyzed Intermolecular C–H Amination with Alkylamines." J. Am.
Chem. Soc. 2011, 133, 7652ꢀ7655; (b) Zhu, D.; Yang, G.; He, J.; Chu, L.;
Chen, G.; Gong, W.; Chen, K.; Eastgate, M. D.; Yu, J.ꢀQ. "Ligandꢀ
Promoted orthoꢀC–H Amination with Pd Catalysts." Angew. Chem. Int.
Ed. 2015, 54, 2497ꢀ2500; (c) He, J.; Shigenari, T.; Yu, J.ꢀQ.
"Palladium(0)/PAr3ꢀCatalyzed Intermolecular Amination of C(sp3)–H
Bonds: Synthesis of βꢀAmino Acids." Angew. Chem. Int. Ed. 2015, 54,
6545ꢀ6549.
(41) Ely, R.; Ramirez, A.; Richardson, P.; Muhuhi, J.; Zlota, A.; Knight, J.
"Some Items of Interest to Process R&D Chemists and Engineers." Org.
Process Res. Dev. 2014, 18, 362ꢀ369.
(42) Birkholz, M.ꢀN.; Freixa, Z.; van Leeuwen, P. W. N. M. "Bite angle
effects of diphosphines in CꢀC and CꢀX bond forming cross coupling
reactions." Chem. Soc. Rev. 2009, 38, 1099ꢀ1118.
(43) The partial dissociation of bidentate phosphines may not be essential
for strongly chelating ligands. Our DFT calculations indicate that, in the
βꢀC elimination with the dCype ligand, the dCype ligand prefers to remain
bidentately bound to the Pd. See Figure S3 for details.
(44) The complete catalytic cycle of the orthoꢀamination is complex and is
beyond the scope of the present computational study. Here, we focus our
studies on the origins of ligand effects on the selectivity between 4a and
4a', which is expected to be controlled by the competing βꢀC and βꢀH
elimination pathways from complexes I and II, respectively. The baseꢀ
mediated conversion of I to II may also affect the yields of 4a' and a few
factors may affect the rate to form II (e.g. the basicity and the solubility of
the base, and steric effects of the alcohol). In addition, iodide anion, which
is expected to bind more tightly with Pd than with Cs, could compete with
the alkoxide for the formation of intermediate II, thereby suppressing the
βꢀH elimination pathways. However, the formation of II was not
investigated computationally due to the complex mechanistic pathways
and the challenges in accurately calculating the baseꢀmediated ligand
exchange processes.
Li, G.ꢀC.; Jain, P.; Farmer, M. E.; He, J.; Shen, P.ꢀX.; Yu, J.ꢀQ. "Ligandꢀ
Promoted metaꢀC–H Amination and Alkynylation." J. Am. Chem. Soc.
2016, 138, 14092ꢀ14099; (c) Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.;
Yu, J.ꢀQ. "Ligand Promoted metaꢀC–H Chlorination of Anilines and
Phenols." J. Am. Chem. Soc. 2016, 138, 14876ꢀ14879; (d) Li, G.ꢀC.;
Wang, P.; Farmer, M. E.; Yu, J.ꢀQ. "LigandꢀEnabled AuxiliaryꢀFree metaꢀ
C−H Arylation of Phenylacetic Acids." Angew. Chem. Int. Ed. 2017, 56,
6874ꢀ6877; (e) Cheng, G.; Wang, P.; Yu, J.ꢀQ. "metaꢀC−H Arylation and
Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline
Catalyst." Angew. Chem. Int. Ed. 2017, 56, 8183ꢀ8186; (f) Wang, P.;
Farmer, M. E.; Yu, J.ꢀQ. "LigandꢀPromoted metaꢀC−H Functionalization
of Benzylamines." Angew. Chem. Int. Ed. 2017, 56, 5125ꢀ5129.
(51) Li, R.; Dong, G. "Direct Annulation between Aryl Iodides and
Epoxides through Palladium/Norbornene Cooperative Catalysis." Angew.
Chem. Int. Ed. 2018, 57, 1697ꢀ1701.
(52) Cheng, H.ꢀG.; Wu, C.; Chen, H.; Chen, R.; Qian, G.; Geng, Z.; Wei,
Q.; Xia, Y.; Zhang, J.; Zhang, Y.; Zhou, Q. "Epoxides as Alkylating
Reagents for the Catellani Reaction." Angew. Chem. Int. Ed. 2018, 57,
3444ꢀ3448.
(53) Aschwanden, P.; Stephenson, C. R. J.; Carreira, E. M. "Highly
Enantioselective Access to Primary Propargylamines:ꢁ 4ꢀPiperidinone as a
Convenient Protecting Group." Org. Lett. 2006, 8, 2437ꢀ2440.
(54) For synthesis of compound 14 using eletrophilic amination in a
benzyne approach, see: Hendrick, C. E.; Wang, Q. "Synthesis of orthoꢀ
Haloaminoarenes by Aryne Insertion of Nitrogen–Halide Bonds." J. Org.
Chem. 2015, 80, 1059ꢀ1069.
(55) Schröter, S.; Stock, C.; Bach, T. "Regioselective crossꢀcoupling
reactions of multiple halogenated nitrogenꢀ, oxygenꢀ, and sulfurꢀ
containing heterocycles." Tetrahedron 2005, 61, 2245ꢀ2267.
(56) Keylor, M. H.; Niemeyer, Z. L.; Sigman, M. S.; Tan, K. L. "Inverting
Conventional Chemoselectivity in PdꢀCatalyzed Amine Arylations with
Multiply Halogenated Pyridines." J. Am. Chem. Soc. 2017, 139, 10613ꢀ
10616.
(57) Wang, X.ꢀC.; Gong, W.; Fang, L.ꢀZ.; Zhu, R.ꢀY.; Li, S.; Engle, K.
M.; Yu, J.ꢀQ. "Ligandꢀenabled metaꢀCꢀH activation using a transient
mediator." Nature 2015, 519, 334ꢀ338.
(58) (a) Cho, J.ꢀY.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M.
R. "Remarkably Selective Iridium Catalysts for the Elaboration of
Aromatic CꢀH Bonds." Science 2002, 295, 305ꢀ308; (b) Ishiyama, T.;
Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. "Mild
IridiumꢀCatalyzed Borylation of Arenes. High Turnover Numbers, Room
Temperature Reactions, and Isolation of a Potential Intermediate." J. Am.
Chem. Soc. 2002, 124, 390ꢀ391; (c) Murphy, J. M.; Liao, X.; Hartwig, J.
F. "Meta Halogenation of 1,3ꢀDisubstituted Arenes via IridiumꢀCatalyzed
Arene Borylation." J. Am. Chem. Soc. 2007, 129, 15434ꢀ15435.
(59) Rucker, R. P.; Whittaker, A. M.; Dang, H.; Lalic, G. "Synthesis of
Hindered Anilines: CopperꢀCatalyzed Electrophilic Amination of Aryl
Boronic Esters." Angew. Chem. Int. Ed. 2012, 51, 3953ꢀ3956.
(60) Qiao, J. X.; Lam, P. Y. S. "Recent Advances in Chan–Lam Coupling
Reaction: CopperꢀPromoted C–Heteroatom Bond CrossꢀCoupling
Reactions with Boronic Acids and Derivatives" In Boronic Acids; Wileyꢀ
VCH Verlag GmbH & Co. KGaA, 2011.
(61) For other orthoꢀaclyation of aryl iodides, see: (a) Pan, S.; Wu, F.; Yu,
R.; Chen, W. "PalladiumꢀCatalyzed Sequential Acylation/Cyanation of
Aryl Iodides: A Regiospecific Synthesis of 2ꢀCyanoaryl Ketones." J. Org.
Chem. 2016, 81, 1558ꢀ1564; (b) Xu, S.; Jiang, J.; Ding, L.; Fu, Y.; Gu, Z.
"Palladium/NorborneneꢀCatalyzed ortho Aliphatic Acylation with Mixed
Anhydride: Selectivity and Reactivity." Org. Lett. 2018, 20, 325ꢀ328.
(62) Martins, A.; Lautens, M. "Aromatic orthoꢀBenzylation Reveals an
Unexpected Reductant." Org. Lett. 2008, 10, 5095ꢀ5097.
(63) Preliminary study shows that mono dentate phosphines work more
efficiently for ortho alkylation, though the exact reason is unclear. One
consideration is that, compared to Oꢀbenzoyl hydroxylamines and
anhydrides used as electrophiles in ortho amination and acylation
respectively, alkyl halides do not contain additional coordinating moieties.
(64) For recent developments, see: (a) Zhang, H.; Chen, P.; Liu, G.
"PalladiumꢀCatalyzed Cascade C–H Trifluoroethylation of Aryl Iodides
and Heck Reaction: Efficient Synthesis of orthoꢀTrifluoroethylstyrenes."
Angew. Chem. Int. Ed. 2014, 53, 10174ꢀ10178; (b) Lei, C.; Jin, X.; Zhou,
J. "PalladiumꢀCatalyzed Alkynylation and Concomitant ortho Alkylation
of Aryl Iodides." ACS Catal. 2016, 6, 1635ꢀ1639; (c) Lei, C.; Jin, X.;
Zhou, J. "PalladiumꢀCatalyzed Heteroarylation and Concomitant orthoꢀ
Alkylation of Aryl Iodides." Angew. Chem. Int. Ed. 2015, 54, 13397ꢀ
13400; (d) Sun, F.; Li, M.; Gu, Z. "Pd/norborneneꢀcatalyzed sequential
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(45) O’Reilly, M. E.; Dutta, S.; Veige, A. S. "βꢀAlkyl Elimination:
Fundamental Principles and Some Applications." Chem. Rev. 2016, 116,
8105ꢀ8145.
(46) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis; University Science Books: California, 2010.
(47) Adding more CsI from the beginning of the reaction was found to
inhibit the conversion of the aryl bromide.
(48) (a) Bergamini, P.; Costa, E.; Ganter, C.; Guy Orpen, A.; G. Pringle,
P. "The reaction of trimethylsilyldiazomethane with complexes of the type
[PtX(CH3)(diphosphine)] (X = Cl, Br, I). Some observations on [small
beta]ꢀhydrogen migrations in PtCHRCH3 species and organoplatinum(II)ꢀ
catalysts for alkene formation from trimethylsilyldiazomethane." J. Chem.
Soc., Dalton Trans. 1999, 861ꢀ866; (b) Fagnou, K.; Lautens, M. "Halide
Effects in Transition Metal Catalysis." Angew. Chem. Int. Ed. 2002, 41,
26ꢀ47.
(49) The attempts to understand this phenomenon by DFT study were not
successful at this stage.
(50) (a) Shen, P.ꢀX.; Wang, X.ꢀC.; Wang, P.; Zhu, R.ꢀY.; Yu, J.ꢀQ.
"LigandꢀEnabled MetaꢀC–H Alkylation and Arylation Using a Modified
ACS Paragon Plus Environment