Journal of the American Chemical Society
COMMUNICATION
here is mainly on MOF synthesis and characterization, our ongoing
work is directed mainly toward new aspects of catalysis.
(9) Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. J. Am.
Chem. Soc. 2009, 131, 4204–4205.
(10) While it is conceivable that supercritical drying (SCD) could
have preserved the porosity of this and other delicate porphyrinic MOFs,
it is important to note that the SCD technique has only recently been
utilized in the MOF field; see refs 11 and 12.
’ ASSOCIATED CONTENT
S
Supporting Information. Synthesis and characterization
b
(11) (a) Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T. J. Am.
Chem. Soc. 2009, 131, 458–460. (b) Cooper, A. I.; Rosseinsky, M. J. Nat.
Chem. 2009, 1, 26–27. (c) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010,
43, 1166–1175. (d) Bae, Y.-S.; Dubbeldam, D.; Nelson, A. P.; Walton,
K. S.; Hupp, J. T.; Snurr, R. Q. Chem. Mater. 2009, 21, 4768–4777.
(12) (a) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.;
Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi,
O. M. Science 2010, 329, 424–428. (b) Farha, O. K.; Yazaydin, A. O.;
Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen,
S. T.; Snurr, R. Q.; Hupp, J. T. Nat. Chem. 2010, 2, 944–948. (c)
Doonan, C. J.; Morris, W.; Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc.
2009, 131, 9492–9493. (d) Xiang, Z.; Cao, D.; Shao, X.; Wang, W.;
Zhang, J.; Wu, W. Chem. Eng. Sci. 2010, 65, 3140–3146. (e) Lohe, M. R.;
Rose, M.; Kaskel, S. Chem. Commun. 2009, 6056–6058.
(13) (a) Kosal, M. E.; Chou, J. H.; Wilson, S. R.; Suslick, K. S. Nat.
Mater. 2002, 1, 118–121. (b) Suslick, K. S.; Bhyrappa, P.; Chou, J. H.;
Kosal, M. E.; Nakagaki, S.; Smithenry, D. W.; Wilson, S. R. Acc. Chem.
Res. 2005, 38, 283–291.
(14) (a) Choi, E. Y.; Barron, P. M.; Novotny, R. W.; Son, H. T.; Hu,
C.; Choe, W. Inorg. Chem. 2009, 48, 426–428. (b) Choi, E. Y.; Barron,
P. M.; Novotny, R. W.; Hu, C. H.; Kwon, Y. U.; Choe, W. Y.
CrystEngComm 2008, 10, 824–826.
(15) Choi, E. Y.; Wray, C. A.; Hu, C. H.; Choe, W. CrystEngComm
2009, 11, 553–555.
(16) (a) Lin, K. J. Angew. Chem., Int. Ed. Engl. 1999, 38, 2730–2732.
(b) Goldberg, I. Chem. Commun. 2005, 1243–1254. (c) Pan, L.; Kelly, S.;
Huang, X. Y.; Li, J. Chem. Commun. 2002, 2334–2335. (d) Hagrman, D.;
Hagrman, P. J.; Zubieta, J. Angew. Chem., Int. Ed. Engl. 1999,
38, 3165–3168.
of starting materials and MOFs, including single-crystal X-ray
diffraction data in CIF format, as well as a detailed description of
catalysis conditions. This information is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
j-hupp@northwestern.edu; stn@northwestern.edu; o-farha@
northwestern.edu
’ ACKNOWLEDGMENT
We thank Dr. Rebecca Jensen for providing L1-Pd. We gratefully
acknowledge the NU-ICEP, NU-NSEC, DTRA (Grant HDTRA-
09-1-0007), and the AFOSR for financial support. We acknowledge
the NU-IMSERC for use of analysis instrumentation. We thank
ChemMatCARS and LS-CAT for use of the APS, a facility
supported by the U.S. DOE, Office of Science, Office of Basic
Energy Sciences (No. DE-AC02-06CH11357). ChemMatCARS
Sector 15 is principally supported by the NSF/DOE (NSF/CHE-
0822838). Use of the LS-CAT Sector 21 was supported by the
Michigan Economic Development Corporation and the Michigan
Technology Tri-Corridor (Grant 085P1000817).
’ REFERENCES
(17) Barron, P. M.; Wray, C. A.; Hu, C.; Guo, Z.; Choe, W. Inorg.
Chem. 2010, 49, 10217–10219.
(1) (a) Tranchemontagne, D. J.; Mendoz-Cortes, J. L.; O’Keeffe, M.;
Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257–1283. (b) Horike, S.;
Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695–704. (c) Ferey, G.
Chem. Soc. Rev. 2008, 37, 191–214.
(2) (a) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T.
Chem. Soc. Rev. 2009, 38, 1330–1352. (b) Murray, L. J.; Dinca, M.; Long,
J. R. Chem. Soc. Rev. 2009, 38, 1294–1314. (c) Li, J.-R.; Kuppler, R. J.;
Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477–1504. (d) Hurd, J. A.;
Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.;
Shimizu, G. K. H. Nat. Chem. 2009, 1, 705–710. (e) Keskin, S.; Heest,
T. M. v.; Sholl, D. S. ChemSusChem 2010, 3, 879–891. (f) Bradshaw, D.;
Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res.
2005, 38, 273–282.
(3) (a) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009,
38, 1248–1256. (b) Corma, A.; Garcia, H.; Xamena, F. X. L. i. Chem.
Rev. 2010, 110, 4606–4655. (c) Lee, J.-Y.; Farha, O. K.; Roberts, J.;
Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009,
38, 1450–1459.
(4) (a) Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am.
Chem. Soc. 2010, 132, 15390–15398. (b) Kitaura, R.; Onoyama, G.;
Sakamoto, H.; Matsuda, R.; Noro, S.-i.; Kitagawa, S. Angew. Chem., Int.
Ed. 2004, 43, 2684–2687. (c) Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp,
J. T.; Albrecht-Schmitt, T. E. Chem. Commun. 2006, 2563–2565.
(5) (a) Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W. J. Am. Chem. Soc. 2005,
127, 8940–8941. (b) Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. Nat.
Chem. 2010, 2, 838–846.
(18) The substantial (but not complete) degradation of crystallinity
following solvent evacuation (as indicated by powder measurements)
and anomalously low values for solvent loss as measured by thermo-
gravimetric analysis (ca. 15 to 10 wt % observed, ca. 65 wt % expected,
see ref 17) likewise are suggestive of framework collapse. It is con-
ceivable that collapse can be avoided by modifying the MOF activation
protocol.
(19) Only ZnZn-RPM was examined. While the measured surface
area is less than expected from the material’s crystal structure, it should
be noted that the detailed activation protocol was not optimized; see SI.
For a discussion of the application of NLDFT to CO2 isotherms, for the
assessment of surface area, see: Jagiello, J.; Thommes, M. Carbon 2004,
42, 1227–1232.
(20) Alkordi, M. H.; Liu, Y.; Larsen, R. W.; Eubank, J. F.; Eddaoudi,
M. J. Am. Chem. Soc. 2008, 130, 12639–12641.
(21) (a) Sheldon, R. A. Metalloporphyrins in Catalytic Oxidations;
Marcel Dekker, Inc.: New York, 1994. (b) Meunier, B. Chem. Rev. 1992,
92, 1411–1456.
(22) (a) Farha, O. K.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2008,
47, 10223–10225. (b) Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.;
Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 950–952.
(23) (a) Batten, S. R. CrystEngComm 2001, 3, 67–72. (b) Gadzikwa,
T.; Zeng, B.-S.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2008,
3672–3674.
(24) 1 mg of catalyst (the amount typically used) produces nearly
400 mg of depleted oxidant. The depleted oxidant readily aggregates to
form an insoluble polymer. An additional 400 mg of insoluble polymer is
formed via spontaneous degradation of the oxidant (and thus requiring
the oxidant to be used in ca. 2-fold excess).
(6) Collman, J. P.; Boulatov, R.; Sunderland, C. J. Chem. Rev. 2004,
104, 561–588.
(7) Banerjee, R.; Ragsdale, S. W. Annu. Rev. Biochem. 2003, 72,
209–247.
(8) Abrahams, B. F.; Hoskins, B. F.; Michail, D. M.; Robson, R.
Nature 1994, 369, 727–729.
5655
dx.doi.org/10.1021/ja111042f |J. Am. Chem. Soc. 2011, 133, 5652–5655