excited state. Based on the phosphorescence, the triplet pp*
state of 1a–b lies at B77 kcal molꢀ1. Hence triplet energy
Notes and references
1 N. J. Turro, Chem. Eng. News, 1967, 45, 84.
transfer from acetone (ET E 79 kcal molꢀ1 27
is quite likely.
)
2 G. Quinkert, Angew. Chem., Int. Ed., 1975, 14, 790.
3 G. S. Hammond, J. Saltiel, A. A. Lamola, N. J. Turro,
J. S. Bradshaw, D. O. Cowan, R. C. Counsell, V. Vogt and
C. Dalton, J. Am. Chem. Soc., 1964, 86, 3197.
4 S. S. Hixson, P. S. Mariano and H. E. Zimmerman, Chem. Rev.,
1973, 73, 531.
5 D. A. Plattner, Angew. Chem., Int. Ed., 1999, 38, 82.
6 H. E. Zimmerman and G. A. Epling, J. Am. Chem. Soc., 1970, 92,
1411.
7 H. E. Zimmerman and D. I. Schuster, J. Am. Chem. Soc., 1962, 84,
4527.
8 H. E. Zimmerman and D. J. Schuster, J. Am. Chem. Soc., 1961, 83,
4486.
9 W. Adam, G. Fragale, D. Klapstein, W. M. Nau and J. Wirz,
J. Am. Chem. Soc., 1995, 117, 12578.
10 B. Giese, P. Wettstein, C. Stahelin, F. Barbosa, M. Neuburger,
¨
M. Zehnder and P. Wessig, Angew. Chem., Int. Ed., 1999, 38, 2586.
11 A. G. Griesbeck, W. Kramer and J. Lex, Angew. Chem., Int. Ed.,
2001, 40, 577.
The involvement of the triplet spin state viz., T1(pp*) in the
reaction path way was ascertained by carrying out the reaction
under O2 saturated conditions that resulted in o5%
conversion.28 Thus 6p-photocyclization of 1a–b could possibly
occur from either the singlet (S1) or the triplet (T1) spin-state
depending on the reaction conditions.29
Based on our mechanistic study28 we showed that the
6p-photocyclization upon direct irradiation in the case of
ortho-tert-butyl substituted axially chiral acrylanilides occurs
at the ortho carbon via the zwitterionic intermediate ‘‘int-ZW’’
(Scheme 1; top) followed by a non-stereo-specific hydrogen
migration with the eventual loss of the ortho-tert-butyl
substituent. As the photocyclization occurs from the S1(pp*)
excited state upon direct irradiation in the case of 1a–b, the
formation of
a zwitterionic intermediate (int-ZW) is
12 M. Sakamoto, H. Kawanishi, T. Mino and T. Fujita, Chem.
Commun., 2008, 2132.
expected.24,26,30,31 Similarly, triplet sensitized irradiation of
13 J. Sivaguru, T. Shichi and V. Ramamurthy, Org. Lett., 2002, 4, 4221.
14 Y. Inoue, in Chiral Photochemistry, ed. Y. Inoue and
V. Ramamurthy, Marcel Dekker, New York, 2004, p. 129.
15 H. Rau, Chem. Rev., 1983, 83, 535.
16 V. Ramamurthy, in Photochemistry in Organized and Constrained
Media, ed. V. Ramamurthy, Wiley-VCH, New York, 1991, p. 429.
17 T. Mori, Y. Inoue and R. G. Weiss, Org. Lett., 2003, 5, 4661.
18 A. J.-L. Ayitou, J. Jesuraj, N. Barooah, A. Ugrinov and
J. Sivaguru, J. Am. Chem. Soc., 2009, 131, 11314.
19 A. J.-L. Ayitou and J. Sivaguru, J. Am. Chem. Soc., 2009, 131,
5036.
1a–b leads to photocyclization from the T1(pp*) excited state
resulting in
a diradical (triplet diradical) intermediate
‘‘int-DR’’ (Scheme 1; bottom). This triplet diradical
‘‘int-DR’’ subsequently abstracts a hydrogen atom from the
ortho-tert-butyl substituent leading to 3,4-dihydroquinolin-
2-one photoproduct 2. The high enantiomeric ratio (Table 1)
in the photoproduct 2 under sensitized irradiation points out a
stereospecific hydrogen abstraction via a cyclic six membered
transition (Scheme 1; bottom) state from the triplet diradical
intermediate (int-DR). Thus the excited spin state S1(pp*) or
T1 (pp*) not only leads to the same photoproduct via two
different reactive intermediates and/or transition states, but
also determines the er values in the photoproduct.
20 D. P. Curran, H. Qi, S. J. Geib and N. C. DeMello, J. Am. Chem.
Soc., 1994, 116, 3131.
21 D. P. Curran, G. R. Hale, S. J. Geib, A. Balog, Q. B. l. Cass,
A. L. G. Degani, M. Z. Hernandes and L. C. G. Freitas,
Tetrahedron: Asymmetry, 1997, 8, 3955.
22 J. Clayden, Chem. Commun., 2004, 127.
23 A. Honda, K. M. Waltz, P. J. Carroll and P. J. Walsh, Chirality,
2003, 15, 615.
Axially chiral chromophores in conjunction with their
corresponding achiral counterparts, offer rich and divergent
photoreactivity that helps us to better understand mechanisms
of light induced stereospecific transformations. Our current
investigation with a-substituted acrylanilides has highlighted
the critical role of the reactive spin state in determining the
enantiomeric excess through two different photochemical
pathways leading to the same photoproduct.
24 Y. Ogata, K. Takagi and I. Ishino, J. Org. Chem., 1971, 36, 3975.
25 N. J. Turro, Modern Molecular Photochemistry, University Science
Books, New York, 1991, pp. 228–230 and 264–266.
26 I. Ninomiya, S. Yamauchi, T. Kiguschi, A. Shinobara and
T. Naito, J. Chem. Soc., Perkin Trans. 1, 1974, 1747.
27 S. L. Murov, I. Carmichael and G. L. Hug, Handbook of
Photochemistry, Marcel Dekker, New York, 1993, pp. 54–98.
28 A. J.-L. Ayitou, A. Ugrinov and J. Sivaguru, Photochem.
Photobiol. Sci., 2009, 8, 751.
The authors thank the financial support of NSF (CAREER:
CHE-0748525). The authors thank the NSF for a Graduate
Student Fellowship and UNCF/MERCK science initiative
research grant to AJA. The authors thank Dr Steffen
Jockusch, Columbia University for insightful discussions on
the photophysical aspects detailed in the manuscript.
29 R. Lapouyade, C. Manigand and A. Nourmamod, Can. J. Chem.,
1985, 63, 2192.
30 O. L. Chapman and W. R. Adams, J. Am. Chem. Soc., 1968, 90,
2333.
31 T. Bach, B. Grosch, T. Strassner and E. Herdtweck, J. Org. Chem.,
2003, 68, 1107.
c
2570 Chem. Commun., 2011, 47, 2568–2570
This journal is The Royal Society of Chemistry 2011