Notes and references
z Crystal data for [4][PF6]: C38H32F6N2P4, M = 754.57, monoclinic,
˚
˚
˚
a = 20.0011(5) A, b = 24.3395(6) A, c = 16.1163(4) A, a = 901,
3
˚
b = 115.9030(10)1, g = 901, V = 7057.5(3) A , T = 120 K, space
group C12/c1, Z = 8, Rint = 0.040. The final R1 values were 0.0449
(I 4 2s(I)). The final wR(F2) values were 0.1038 (I 4 2s(I)).
y Crystal data for 5: C47H48Ag1Cl1F3N2O5P3S1, M = 1046.21, orthor-
˚
˚
˚
hombic, a = 11.9962(5) A, b = 15.9208(7) A, c = 25.0428(10) A,
3
˚
a = 901, b = 901, g = 901, V = 4782.9(3) A , T = 120 K, space group
P212121, Z = 4, Rint = 0.062. The final R1 values were 0.0420
(I 4 2s(I)). The final wR(F2) values were 0.0968 (I 4 2s(I)).
z Crystal data for 6: C38H32Cl2N2P3PtꢁF6P, M = 1020.56, monocli-
˚
˚
˚
nic, a = 12.5297(7) A, b = 13.4232(7) A, c = 22.7095(13) A, a = 901,
3
˚
b = 96.303(2)1, g = 901, V = 3796.4(4) A , T = 120 K, space group
P121/n1, Z = 4, Rint = 0.028. The final R1 values were 0.0182
(I 4 2s(I)). The final wR(F2) values were 0.0435 (I 4 2s(I)).
1 C. M. Crudden and D. P. Allen, Coord. Chem. Rev., 2004, 248,
2247–2273.
2 D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem.
Rev., 1999, 100, 39–92.
3 N. Marion and S. P. Nolan, Acc. Chem. Res., 2008, 41, 1440–1449.
4 D. Enders and T. Balensiefer, Acc. Chem. Res., 2004, 37, 534–541.
5 W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309.
6 A. H. Cowley and R. A. Kemp, Chem. Rev., 1985, 85, 367–382.
7 D. Gudat, Coord. Chem. Rev., 1997, 163, 71–106.
8 H. Nakazawa, Adv. Organomet. Chem., 2004, 50, 107–143.
9 C. A. Caputo, M. C. Jennings, H. M. Tuononen and N. D. Jones,
Organometallics, 2009, 28, 990–1000.
10 C. A. Caputo, J. T. Price, M. C. Jennings, R. McDonald and
N. D. Jones, Dalton Trans., 2008, 3461–3469.
11 J. W. Dube, G. J. Farrar, E. L. Norton, K. L. S. Szekely, B. F. T.
Cooper and C. L. B. Macdonald, Organometallics, 2009, 28,
4377–4384.
12 G. Reeske and A. H. Cowley, Inorg. Chem., 2006, 46, 1426–1430.
13 M. B. Abrams, B. L. Scott and R. T. Baker, Organometallics, 2000,
19, 4944–4956.
14 C. A. Caputo, A. L. Brazeau, Z. Hynes, J. T. Price,
H. M. Tuononen and N. D. Jones, Organometallics, 2009, 28,
5261–5265.
15 N. J. Hardman, M. B. Abrams, M. A. Pribisko, T. M. Gilbert,
R. L. Martin, G. J. Kubas and R. T. Baker, Angew. Chem., Int.
Ed., 2004, 43, 1955–1958.
16 S. Saleh, E. Fayad, M. Azouri, J.-C. Hierso, J. Andrieu and
M. Picquet, Adv. Synth. Catal., 2009, 351, 1621–1628.
17 B. Breit, J. Mol. Catal. A: Chem., 1999, 143, 143–154.
18 J. A. Mata, M. Poyatos and E. Peris, Coord. Chem. Rev., 2007, 251,
841–859.
19 E. Peris and R. H. Crabtree, Coord. Chem. Rev., 2004, 248,
2239–2246.
20 J. T. Singleton, Tetrahedron, 2003, 59, 1837–1857.
21 M. E. van der Boom and D. Milstein, Chem. Rev., 2003, 103,
1759–1792.
22 M. Albrecht and G. van Koten, Angew. Chem., Int. Ed., 2001, 40,
3750–3781.
23 T. Steinke, B. K. Shaw, H. Jong, B. O. Patrick and M. D. Fryzuk,
Organometallics, 2009, 28, 2830–2836.
24 L. Fan, B. M. Foxman and O. V. Ozerov, Organometallics, 2004,
23, 326–328.
25 H. Nakazawa, Y. Yamaguchi, K. Kawamura and K. Miyoshi,
Organometallics, 1997, 16, 4626–4635.
ꢀ
Fig. 3 Displacement ellipsoid diagram (50%) of 6. PF6 counter-
˚
anion has been omitted for clarity. Relevant interatomic distances (A)
and angles (1): Pt–P1, 2.2980(5); Pt–P2, 2.1553(5); Pt–P3, 2.3018(5);
Pt–Cl1, 2.3339(5); P2–Cl2, 2.0588(6); Pt–P2–Cl2, 110.06.
The X-ray structure of the product (Fig. 3), indeed, revealed
that one of the Pt-bound Clꢀ ligands had migrated to the
central phosphenium unit, resulting in the cationic Pt complex
[(PPClP)PtCl][PF6] 6.z Chloride attack on the electrophilic
phosphenium unit is not particularly surprising, and similar
halide and alkyl migration events have been previously
reported.13,25–27 In contrast to Ag complex 5, the central
chlorophosphine unit in 6 is bound tightly to Pt, with a P2–Pt
˚
distance (2.1553(5) A) even shorter than that observed for the
˚
˚
Pt-bound phosphines (Pt–P1: 2.2980(5) A, Pt–P3: 2.3018(5) A).
Notably, this Pt–P2 distance is also remarkably similar to that
in the Pt phosphenium complex reported by Baker and co-
15
˚
workers (2.116(3) A). This short interaction is likely due to
extensive p-backbonding from Pt into the s* orbital of the
strongly acidic diamidochlorophosphine unit. Indeed, both the
1
Pt–P distance and the JPt–P coupling constant associated with
the central phosphorus donor are in the range reported for
Pt–P(OMe)3 complexes.28 Notably, no reaction was observed
between 6 and TlPF6, implying that chloride ion abstraction is
not feasible once coordinated to a metal center.
In conclusion, a new pincer ligand containing a central
N-heterocyclic phosphenium cation has been synthesized.
Preliminary investigations into the coordination chemistry of
this ligand with the PtCl2 fragment suggest that the electro-
philic nature of the central phosphenium donor facilitates
halide migration from Pt to P. Further modification of the
ligand framework with more sterically encumbering substituents
may prevent this intramolecular halide transfer. Additional
investigations into the coordination chemistry of 4+ with a
variety of other transition metals are currently underway and
will be reported in subsequent publications.
26 H. Nakazawa, Y. Yamaguchi, T. Mizuta, S. Ichimura and
K. Miyoshi, Organometallics, 1995, 14, 4635–4643.
27 K. Kawamura, H. Nakazawa and K. Miyoshi, Organometallics,
1999, 18, 4785–4794.
28 P. G. Waddell, A. M. Z. Slawin and J. D. Woollins, Dalton Trans.,
2010, 39, 8620–8625.
This work was funded by startup funds from Brandeis
University.
c
3636 Chem. Commun., 2011, 47, 3634–3636
This journal is The Royal Society of Chemistry 2011