LETTER
Enantioselective Reduction of Benzofuranyl Aryl Ketones
67
Table 2 Pressure Hydrogenation Using Catalyst 6a
Discovery Dev. 2003, 6, 855. (d) Lennon, I. C.; Ramsden, J.
A. Org. Process Res. Dev. 2005, 9, 110. (e) Diaz-
Venezuela, M. B.; Phillips, S. D.; France, M. B.; Gunn,
M. E.; Clarke, M. L. Chem. Eur. J. 2009, 15, 1227.
(f) Chen, C.-Y.; Reamer, R.; Chilenski, J. R.; McWilliams,
C. J. Org. Lett. 2003, 5, 5039. (g) Ohkuma, T.; Koizumi,
M.; Yoshida, M.; Noyori, R. Org. Lett. 2000, 2, 1749.
(h) Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem.
2006, 71, 7035.
Entry
Ketone
Conv. (%)b
ee (%)c
44
1
2
3
4
5
6
7
8
89
>99
83
48
9
42
(3) (a) Wu, X.; Vinci, D.; Ikariya, T.; Xiao, J. Chem. Commun.
2005, 447. (b) Zaidlewicz, M.; Tafelska-Kaczmarek, A.;
Prewysz-Kwinto, A. Tetrahedron: Asymmetry 2005, 16,
3205.
(4) (a) Nichols, D. E.; Hoffman, A. J.; Oberlender, R. A.; Riggs,
R. M. J. Med. Chem. 1986, 29, 302. (b) Cho, C.-H.;
Neuenswander, B.; Lushington, G. H.; Larock, R. C.
J. Comb. Chem. 2008, 10, 941; and references therein.
(c) Nichols, D. E.; Snyder, S. E.; Oberlender, R.; Hohnson,
M. P.; Huang, Z. J. Med. Chem. 1991, 34, 276.
10
11
12
>99
>99
77
83
86
81
a Reactions were carried out using catalyst 6 (0.5 mol%) at 40 °C and
50 bar hydrogen, 1% KOt-Bu in i-PrOH (3 mL) for 16 h.
b Conversion determined against Et4Si as internal standard.
c Determined by HPLC (see experimental section), and assigned as R
configuration.
(d) Johansson, G.; Brisander, N.; Sundquist, S.; Hacksell, U.
Chirality 1998, 10, 813. (e) de Carvalho e Silveiria, G. P.;
Coelho, F. Tetrahedron Lett. 2005, 46, 6477. (f)Sun, L.-Q.;
Takaki, K.; Chen, J.; Bertenshaw, S.; Iben, L.; Mahle, C. D.;
Ryan, E.; Gao, Q.; Xu, C. Bioorg. Med. Chem. Lett. 2005,
15, 1345. (g) Vinh, T. K.; Lopez Delgado, P. O.; Fernandez-
Perez, S.; Walters, H. M.; Smith, H. J.; Nichols, P. J.;
Simons, C. Bioorg. Med. Chem. Lett. 1999, 9, 2105.
(5) (a) Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem.
2004, 69, 4885. (b) Ohhuma, T.; Koizumi, M.; Ikehira, H.;
Yokozawa, T.; Noyori, R. Org. Lett. 2000, 2, 659.
(c) Sandoval, C. A.; Qixun, S.; Liu, S.; Noyori, R. Chem.
Asian J. 2010, 4, 1221.
(6) Maerten, E.; Agbossou-Niedercorn, F.; Castanet, Y.;
Mortreux, A. Tetrahedron 2008, 64, 8700.
(7) Gill, M. Tetrahedron 1984, 40, 621.
(8) An almost identical R-configured alcohol to 13 (fluoro rather
than chloro) gave opposite optical rotation to (S)-13, see:
Botta, M.; Summa, V.; Corelli, F.; Di Pietro, G.; Lombardi,
P. Tetrahedron: Asymmetry 1996, 7, 1263.
ue, is higher than observed in the reduction of the bench-
mark substrate acetophenone using this catalyst.
In conclusion, this study on the asymmetric reduction of
some benzofuranyl aryl ketones provides support for the
proposal that certain transfer hydrogenation catalysts
have a significant element of electronic control over the
selectivity, most likely as a result of favourable Ru–ArC–
H·Ar p interactions in the transition state. On the other
hand, the results are consistent with these pressure hydro-
genations being primarily under steric control. This study
also provides a convenient method to prepare secondary
alcohols flanked with benzofuranyl and aryl substituents
in good enantioselectivity.9
Supporting Information for this article is available online at
(9) The catalysts used were formed from either
[RuCl2(benzene)]2, [RuCl2(p-cymene)]2 or [RhCl2Cp*]2 and
(S,S)-Ts-DPEN or (1R,2S)-(+)-cis-1-amino-2-indanol. Using
[RuCl2(R)-BINAP(R,R)-DPEN], alcohol 16 was assigned as
having R-configuration by Mosher analysis6,8 on the
mandelate ester (see the Supporting Information). A similar
analysis was carried out on alcohol 15. The other alcohols,
which show similar HPLC behaviour, are therefore proposed
to have the (R)-configuration. Transfer hydrogenation
reactions using [RuCl2(benzene)]2, [RuCl2(p-cymene)]2 or
[RhCl2Cp*]2 combined with (S,S)-Ts-DPEN or (1R,2S)-(+)-
cis-1-amino-2-indanol as catalyst, gave the opposite S-
configured alcohols in each case.
Acknowledgment
We thank the EPSRC for funding, Johnson Matthey for the loan of
certain precious metal salts and all the technical staff in the School
of Chemistry.
References and Notes
(1) (a) The comprehensive handbook of homogeneous
hydrogenation; Elsevier, C. J.; DeVries, J. N. H., Eds.;
Wiley-VCH: Weinheim, 2006. (b) Ikariya, T.; Blacker, A. J.
Acc. Chem. Res. 2007, 40, 1300. (c) Gladiali, S.; Alberico,
E. Chem. Soc. Rev. 2006, 35, 226. (d) Hashiguchi, S.; Fujii,
A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1995, 117, 7562. (e) Ohhuma, T.; Ooka, H.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417.
2-(Trimethylsilyl)benzofuran:7 A solution of 2,3-benzo-
furan (5.1 mL, 46 mmol) in anhydrous THF (50 mL) was
cooled to –78 °C in a nitrogen atmosphere. n-BuLi (40 mL,
1.6 M in hexanes, 64 mmol) was then added slowly to the
solution. After stirring at –78 °C for 1 h, chlorotri-methyl-
silane (9.5 mL, 75 mmol) was added to the suspension. The
mixture was then allowed to stir at –78 °C for 1 h, then at r.t.
for a further 16 h. The reaction mixture was diluted with
hexanes, filtered, and evacuated in vacuo to give a crude
yellow oil (9.108 g). The crude product was purified by
column chromatography (silica, hexane), to give a colourless
oil (7.368 g, 39 mmol, 84%). 1H NMR (400 MHz, CDCl3):
d = 0.34 (s, 9 H, SiCH3), 6.84 (s, 1 H, CHCSiMe3), 7.13–7.29
(m, 2 H, 2 × ArH), 7.45–7.60 (s, 2 H, 2 × ArH); 13C NMR
(75 MHz, CDCl3): d = 0.1 [Si(CH3)3], 113.1 [CHC(SiMe3)],
(f) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.-I.;
Ikariya, T.; Noyori, R. Chem. Commun. 1996, 233.
(g) Blacker, A. J.; Mellor, B. J. WO9842643A1, Priority
date 26/3/1997 (Avecia), 1997. (h) Doucet, H.; Ohkuma, T.;
Murata, K.; Yokozawa, T.; Kazawa, M.; Katayama, E.;
England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem. Int.
Ed. 1998, 37, 1703.
(2) (a) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40,
40. (b) Lennon, I. C.; Casy, G.; Johnson, N. B. Chem. Today
2003, 63. (c) Lennon, I. C.; Moran, P. H. Curr. Opin. Drug
Synlett 2011, No. 1, 65–68 © Thieme Stuttgart · New York