1580
I. Y. Titov et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1578–1581
Table 1
Acknowledgment
Effects of polyalkoxybenzene analogues of phenstatin on sea urchin embryos
Compound
ECa
(l
M)
This work was supported by a grant from Chemical Block Ltd.
Cleavage alteration
Cleavage arrest
Embryo spinning
CA4b
0.002
0.002
0.01
2
0.01
0.01
0.05
>4
4
0.01
>4
0.05
0.05
0.5
>5
>5
0.1
>5
Supplementary data
CA2c
7a, phenstatin
Supplementary data associated with this article can be found, in
include MOL files and InChiKeys of the most important compounds
described in this article.
7b
7c
7d
7e
7f
1
0.001
2
0.1
0.2
1
>5
>5
7g
0.5
References and notes
a
The sea urchin embryo assay was conducted as described in Ref. 48. Duplicate
measurements showed no differences in effective threshold concentration (EC)
values.
1. Pettit, G. R.; Cragg, G. M.; Herald, D. L.; Schmidt, J. M.; Lobavanijaya, P. Can. J.
Chem. 1982, 60, 1347.
2. Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochemistry 1989, 28, 6984.
3. Pettit, G. R.; Anderson, C. R.; Herald, D. L.; Jung, M. K.; Lee, D. J.; Hamel, E.;
Pettit, R. K. J. Med. Chem. 2003, 46, 525.
b
Synthesized according to Ref. 52.
c
Synthesized according to Ref. 42.
4. Kingston, D. G. I. J. Nat. Prod. 2009, 72, 507.
5. Singh, R.; Kaur, H. Synthesis 2009, 15, 2471.
6. Siemann, D. W.; Chaplin, D. J.; Walicke, P. A. Expert Opin. Invest. Drugs 2009, 18,
189.
7. Siemann, D. W. Cancer Treat. Rev. 2011, 37, 63.
8. Nam, N.-H. Curr. Med. Chem. 2003, 10, 1697.
9. Tron, G. C.; Pyrali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med.
Chem. 2006, 49, 3033.
10. Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel,
E. J. Med. Chem. 1991, 34, 2579.
11. Pettit, G. R.; Rhodes, M. R.; Herald, D. L.; Hamel, E.; Schmidt, J. M.; Pettit, R. K. J.
Med. Chem. 2005, 48, 4087.
12. Aprile, S.; Del Grosso, E.; Tron, G. C.; Grosa, G. Drug Metab. Dispos. 2007, 35,
2252.
immediately after hatching (8–10 h after fertilization). Lack of for-
ward movement, settlement to the bottom of the culture vessel,
and rapid spinning around the animal-vegetal axis of the embryo
suggest a tubulin-destabilizing effect caused by a molecule.49 The
specific tuberculate shape of arrested eggs seems to be an addi-
tional indicator of the tubulin destabilizing activity. Data generated
by the assay for multiple marketed and experimental antimitotics
correlated well with the results generated by conventional cell-
based and tubulin polymerization procedures.48,50,51 The details
of biological evaluation using the sea urchin embryo assay are pre-
sented in Supplementary data.
13. Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R.; Hamel, E.;
Pettit, R. K. J. Med. Chem. 1998, 41, 1688.
As evidenced from Table 1, 7a and 7d displayed noticeable
cleavage alteration, arrest, and embryo spinning, suggesting their
tubulin-destabilizing activity. It was assumed that the less potent
antimitotics 7c, 7f, and 7g were tubulin destabilizers as well, due
to the tuberculate shape of the arrested eggs in the assay, although
these molecules failed to induce embryo spinning.48,50,51 Agents
14. Pettit, G. R.; Toki, B. U.S. Patent 6943,194, 2005.
15. Pettit, G. R.; Grealish, M. P.; Herald, D. L.; Boyd, M. R.; Hamel, E.; Pettit, R. K. J.
Med. Chem. 2000, 43, 2731.
16. Pettit, G. R.; Grealish, M. P. WIPO Patent WO 2001081288, 2001.
17. Vernon, B.; Powell, S. WIPO Patent WO 2004009127, 2004; Chem. Abstr. 2004,
140, 133864.
18. Magalhaes, H. I.; Bezerra, D. P.; Cavalcanti, B. C.; Wilke, D. V.; Rotta, R.; de Lima,
D. P.; Beatriz, A.; Alves, A. P.; Bitencourt, F. D.; de Figueiredo, I. S.; Alencar, N.
M.; Costa-Lotufo, L. V.; Moraes, M. O.; Pessoa, C. Cancer Chemother. Pharmacol.
19. Liou, J. P.; Chang, C. W.; Song, J. S.; Yang, Y. N.; Yeh, C. F.; Tseng, H. Y.; Lo, Y. K.;
Chang, Y. L.; Chang, C. M.; Hsieh, H. P. J. Med. Chem. 2002, 45, 2556.
20. Hsieh, H. P.; Liou, J. P.; Lin, Y. T.; Mahindroo, N.; Chang, J. Y.; Yang, Y. N.; Chern,
S. S.; Tan, U. K.; Chang, C. W.; Chen, T. W.; Lin, C. H.; Chang, Y. Y.; Wang, C. C.
Bioorg. Med. Chem. Lett. 2003, 13, 101.
21. Liou, J. P.; Chang, J. Y.; Chang, C. W.; Chang, C. Y.; Mahindroo, N.; Kuo, F. M.;
Hsieh, H. P. J. Med. Chem. 2004, 47, 2897.
22. Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.; Preti, D.;
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.; Balzarini, J.; Brancale, A.;
Sarkar, T.; Hamel, E. Bioorg. Med. Chem. 2008, 16, 5367.
23. Alvarez, C.; Alvarez, R.; Corchete, P.; Perez-Melero, C.; Pelaez, R.; Medarde, M.
Bioorg. Med. Chem. Lett. 2007, 17, 3417.
24. Reddy, G. R.; Kuo, C.-C.; Tan, U.-K.; Coumar, M. S.; Chang, C.-Y.; Chiang, Y.-K.;
Lai, M.-J.; Yeh, J.-Y.; Wu, S.-Y.; Chang, J.-Y.; Liou, J.-P.; Hsieh, H.-P. J. Med. Chem.
2008, 51, 8163.
25. Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Lopez Cara, C.; Preti, D.; Fruttarolo,
F.; Pavani, M. G.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di Antonella, C.;
Balzarini, J.; Hadfield, J. A.; Brancale, A.; Hamel, E. J. Med. Chem. 2007, 50, 2273.
26. Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cruz-Lopez, O.; Tolomeo, M.;
Grimaudo, S.; Di Cristina, A.; Pipitone, M. R.; Balzarini, J.; Brancale, A.; Hamel, E.
Bioorg. Med. Chem. 2010, 18, 5114.
27. Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.;
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, M. R.; Balzarini, J.; Zonta,
N.; Brancale, A.; Hamel, E. Bioorg. Med. Chem. 2009, 17, 6862.
28. Alvarez, C.; Alvarez, R.; Corchete, P.; Lopez, J. L.; Perez-Melero, C.; Pelaez, R.;
Medarde, M. Bioorg. Med. Chem. 2008, 16, 5952.
29. Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez,
O.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.;
Balzarini, J.; Brancale, A.; Hsieh, H. P.; Hamel, E. J. Med. Chem. 2008, 51, 1464.
30. Hu, L.; Jiang, J.-D.; Qu, J.; Li, Y.; Jin, J.; Li, Z.-R.; Boykin, D. W. Bioorg. Med. Chem.
Lett. 2007, 17, 3613.
31. Nien, C.-Y.; Chen, Y.-C.; Kuo, C.-C.; Hsieh, H.-P.; Chang, C.-Y.; Wu, J.-S.; Wu, S.-
Y.; Liou, J.-P.; Chang, J.-Y. J. Med. Chem. 2010, 53, 2309.
32. Duan, J.-X.; Cai, X.; Meng, F.; Lan, L.; Hart, C.; Matteucci, M. J. Med. Chem. 2007,
50, 1001.
7b, 7c, and 7e–f were not tested at concentrations of >4–5 lM
due to their limited solubility in DMSO and/or seawater.
Literature data suggest that the presence of three methoxy sub-
stituents in the A ring of combretastatins and phenstatin analogues
is crucial for the antitubulin activity.3,11,23,25,30,35,36,53 However, in
the sea urchin embryo test, CA2-related phenstatin derivative
containing myristicin moiety (7d) was consistently more potent
than phenstatin (7a), exhibiting the activity similar to those of CA4
and CA2. Ethylenedioxy derivatives (7f and 7g) were less active.
The presence of additional methoxy group in apiol, dillapiol, and
tetramethoxybenzene fragments of 7b, 7c, and 7e, respectively,
dramatically reduced the antimitotic effect. A similar observation
was made for the polyalkoxyphenyl analogues of combretastatins.42
Biological evaluation of ethylenedioxy derivatives (7f and 7g)
showed that the removal of hydroxy group in the ring B decreased
antimitotic activity. This was comparable with the reported antimi-
totic effect of (4-methoxyphenyl)(3,4,5-trimethoxyphenyl)metha-
none that was determined to be significantly less potent than
phenstatin (IC50 values of 0.4–0.6
lM in the sea urchin embryo
assay).18
In summary, a variety of phenstatin ring A modifications de-
rived from apiol (1b), dillapiol (1c), myristicin (1d), and ethylen-
edioxybenzaldehyde (3f), yielded antimitotic compounds. The
myristicin derivative 7d (CA2 analogue) was more effective than
the parent compound phenstatin (7a), displaying the antiprolifera-
tive tubulin-destabilizing activity at the same concentration range
as CA2 and CA4. Compound 7d was synthesized using the simple
starting material extracted from parsley seeds. In contrast to com-
bretastatins, 7d featured the steric stability with potential for fur-
ther design as anticancer agent.
33. Alvarez, R.; Alvarez, C.; Mollinedo, F.; Sierra, B. G.; Medarde, M.; Pelaez, R.
Bioorg. Med. Chem. 2009, 17, 6422.