C. Cabanetos et al. / Polymer 52 (2011) 2286e2294
2293
higher second hyperpolarizability coefficient than DR1, in order to
prepare stable polymers with high EO coefficients.
1
0,8
0,6
0,4
0,2
0
M5
Acknowledgments
PAS1
M4
M3
Agence Nationale de la Recherche (ANR-Télécom with project
ModPol) and Région Pays de la Loire (MILES-MATTADOR program)
are gratefully acknowledged for the financial support of these
researches. V. R. thanks the Région Aquitaine for financial support
in optical, laser, and computer equipment. J.L. Moneger is
acknowledged for technical assistance (TGA analyses).
M2
P2
P1
50
65
80
95
110
125
140
155
Temperature (°C)
References
Fig. 5. Thermal stability of the studied matrices upon heating an initially poled film at
a rate of 2 ꢀC/min.
[1] Dalton L, Harper A, Ren A, Wang F, Todorova G, Chen J, Zhang C, Lee M. Ind Eng
Chem Res 1998;38(1):8e33.
ever reported in the field of electro-optic organic materials [10], the
Huisgen cross-linking reaction presented herein represents
a promising strategy since it enables to maintain the chromophore
orientation at a higher temperature than many reported cross-
linked NLO polymers [26,29,64,65] and as important the thermal
stability of these polymers lies above 85 ꢀC which is the lowest
threshold temperature for practical applications [10].
[2] Ostroverkhova O, Moerner WE. Chem Rev 2004;104(7):3267e314.
[3] Sullivan PA, Dalton LR. Acc Chem Res 2010;43(1):10e8.
[4] Prasad PN, Williams DJ. Introduction to nonlinear optical effects in molecules.
New York: John Wiley and Sons; 1991.
[5] Lee K-S, Dalton L. Adv Polym Sci; 2002:1581e6.
[6] Lee K-S, Kajzar F, Lee K-S, Jen A. Polymeric materials and their orientation
techniques for second-order nonlinear optics. In: Polymers for photonics
applications II, vol. 161. Berlin/Heidelberg: Springer; 2003. 1e85.
[7] Enami Y, Derose CT, Mathine D, Loychik C, Greenlee C, Norwood RA, Kim TD,
Luo J, Tian Y, Jen AKY, Peyghambarian N. Nat Photonics; 2007:1180e5.
[8] HaackG, Förster H, Büttiker M. PhysRev B 2010;82(15):155303e155303/155309.
[9] Dalton LR. Synth Met 2001;124(1):3e7.
4. Conclusions
[10] Dalton LR, Benight SJ, Johnson LE, Knorr DB, Kosilkin I, Eichinger BE,
Robinson BH, Jen AKY, Overney RM. Chem Mater 2011;23(3):430e45.
[11] Zyss J, Ledoux I. Chem Rev 1994;94(1):77e105.
[12] Luo J, Zhou X-H, Jen AKY. J Mater Chem 2009;19(40):7410e24.
[13] Burland DM, Miller RD, Walsh CA. Chem Rev 1994;94(1):31e75.
[14] Davey MH, Lee VY, Wu LM, Moylan CR, Volksen W, Knoesen A, Miller RD,
Marks TJ. Chem Mater 2000;12(6):1679e93.
[15] Jen AKY, Cai Y, Bedworth PV, Marder SR. Adv Mater 1997;9(2):132e5.
[16] Chen T-A, Jen AKY, Cai Y. J Am Chem Soc 1995;117(27):7295e6.
[17] Miller RD, Burland DM, Jurich M, Lee VY, Moylan CR, Thackara JI, Twieg RJ,
Verbiest T, Volksen W. Macromolecules 1995;28(14):4970e4.
[18] Jungbauer D, Reck B, Twieg R, Yoon DY, Willson CG, Swalen JD. Appl Phys Lett
1990;56(26):2610e2.
[19] Hubbard MA, Marks TJ, Lin W, Wong GK. Chem Mater 1992;4(5):965e8.
[20] Eich M, Bjorklund GC, Yoon DY. Polym Adv Technol 1990;1(2):189e98.
[21] Mao SSH, Ra Y, Guo L, Zhang C, Dalton LR, Chen A, Garner S, Steier WH. Chem
Mater 1998;10(1):146e55.
[22] Carella A, Centore R, Mager L, Barsella A, Fort A. Org Electron 2007;8
(1):57e62.
[23] Luo J, Huang S, Cheng Y-J, Kim T-D, Shi Z, Zhou X-H, Jen AKY. Org Lett 2007;9
(22):4471e4.
[24] Ma H, Liu S, Luo J, Suresh S, Liu L, Kang SH, Haller M, Sassa T, Dalton LR,
Jen AKY. Adv Funct Mater 2002;12(9):565e74.
[25] Haller M, Luo J, Li H, Kim T-D, Liao Y, Robinson BH, Dalton LR, Jen AKY.
Macromolecules 2004;37(3):688e90.
A new implementation of copper-free thermal Huisgen cyclo-
addition, as cross-linkable reaction for quadratic nonlinear optical
polymers, has been developed. It is based on the introduction of the
two complementary cross-linkable groups (azide and alkyne) in
two different materials, mixed just before the preparation of the
film. The new system consists in a polymer containing the chro-
mophore (DR1) and a single cross-linking group (azide or alkyne)
as pendant groups and a second material, corresponding to the
doping agent, containing several units of the complementary cross-
linkable group. In this study we have shown that mixtures of the
above mentioned polymer and a suitable doping agent are miscible
in the most commonly used organic solvents and allow to produce
homogeneous and thick films with good optical quality. Secondly,
this new strategy probably overcomes the potentially short shelf-
storage lifetime, since the cross-linkable groups are separated until
the utilization of the polymers. Second-harmonic generation
measurements demonstrate, first that the doping of such polymers
with a suitable polyazide or polyalkyne reagent does not alter the
orientation of the chromophores, since the SHG coefficients of the
mixtures M1-M5 (d33 up to 60 pm/V) were in the same range as
that reported for DR1-based polymers. Secondly, depoling experi-
ments revealed that the stability of the chromophore orientation in
these mixtures is not only enhanced compared to uncross-linked
polymer, but is also comparable to that obtained with the best
cross-linkable polymer PAS1 described in our previous studies. This
latter result demonstrates that the derivatization of the chromo-
phore with a cross-linking group is not an absolute requirement for
this copper-free Huisgen cross-linking reaction to be used. This
feature broadens the scope and versatility of this new cross-linking
methodology and most probably widens the possibilities offered by
copper-free Huisgen cross-linking reaction in the field of electro-
optic materials. Finally, when a cross-linking group (azide) is
positioned on both the chromophore and on the polymer back-
bone, the highest electro-optic stability was recorded (150 ꢀC). This
result tends to indicate that the mixture of two complementary
materials is certainly more efficient to raise the glass transition
temperature of a polymer by Huisgen reaction than when the two
cross-linking groups are grafted on a single polymer. The next step
is to apply this fully operational strategy to chromophores having
[26] Ma H, Chen B, Sassa T, Dalton LR, Jen AKY. J Am Chem Soc 2001;123(5):986e7.
[27] Luo J, Haller M, Ma H, Liu S, Kim T-D, Tian Y, Chen B, Jang S-H, Dalton LR,
Jen AKY. J Phys Chem B 2004;108(25):8523e30.
[28] Luo J, Liu S, Haller M, Liu L, Ma H, Jen AKY. Adv Mater 2002;14(23):1763e8.
[29] Bai Y, Song N, Gao JP, Sun X, Wang X, Yu G, Wang ZY. J Am Chem Soc 2005;127
(7):2060e1.
[30] Bosc D, Foll F, Boutevin B, Rousseau A. J Appl Polym Sci 1999;74(4):974e82.
[31] Monnereau C, Blart E, Illien B, Paris M, Odobel F.
J Phys Org Chem;
2005:181050e8.
[32] Apostoluk A, Nunzi JM, Boucher V, Essahlaoui A, Seveno R, Gundel HW,
Monnereau C, Blart E, Odobel F. Opt Commun 2006;260(2):708e11.
[33] Monnereau C, Blart E, Montembault V, Fontaine L, Odobel F. Tetrahedron
2005;61(42):10113e21.
[34] Jang SH, Jen AK. Chem Asian J 2009;4(1):20e31.
[35] Morotti T, Calabrese V, Cavazzini M, Pedron D, Cozzuol M, Licciardello A,
Tuccitto N, Quici S. Dalton Trans 2008;22:2974e82.
[36] Wang Y, Wang, Guo Y, Cui, Lin Q, Yu, Liu, Xu L, Zhang, Yang B. Langmuir
2004;20(21):8952e4.
[37] Heflin JR, Guzy MT, Neyman PJ, Gaskins KJ, Brands C, Wang Z, Gibson HW,
Davis RM, Van Cott KE. Langmuir 2006;22(13):5723e7.
[38] Facchetti A, Annoni E, Beverina L, Morone M, Zhu P, Marks TJ, Pagani GA. Nat
Mater 2004;3(12):910e7.
[39] Katz HE, Wilson WL, Scheller G. J Am Chem Soc 1994;116(15):6636e40.
[40] Kim T-D, Kang J-W, Luo J, Jang S-H, Ka J-W, Tucker N, Benedict JB, Dalton LR, Gray T,
Overney RM, Park DH, Herman WN, Jen AKY. J Am Chem Soc 2007;129(3):488e9.
[41] Caruso U, Centore R, Panunzi B, Roviello A, Tuzi A. Eur J Inorg Chem 2005;2005
(13):2747e53.