1
2
Tetrahedron
1
3
(
1H, dddd, J = 13.3, 9.8, 6.3 and 3.3), 1.7
A
1
C
(1
C
H,
E
d
P
dd
T
d,
E
J
D
=
MA
=
NU
7.0
),
S
4.
C
23
R
-4
I
.2
P
7
T
(2H, AB part of ABX ), 7.20-7.41 (5H, m). C
3
1
3.3, 11.5, 9.8 and 4.8), 2.28 (1H, br s), 2.52 (1H, dd, J = 11.8
NMR (100 MHz, CDCl ) δ: -2.9 (3xCH 11.5 (CH ), 14.4
3
3
3
13
and 3.3), 4.19 (2H, AB part of ABX3). C NMR (100 MHz,
(CH ), 19.0 (CH ), 42.8 (CH), 54.7 (CH), 60.6 (CH ), 83.1 (C),
3 2 2
CDCl ) δ: -3.1 xCH 14.2 (CH ), 14.4 (CH ), 21.0 (CH ),
127.0 (4x=CH), 128.7 (=CH), 142.4 (=C), 172.2 (C=O), 175.0
3
3
3
3
3
+
2
1.3 (CH ), 29.0 (CH ), 51.9 (CH), 60.5 (CH ), 66.7 (C), 175.9
(C=O). HRMS (ESI): m/z: calcd for [MNH ] C H NO Si:
2
2
2
4
18 30
4
1
(
C=O). Minor diastereomer: H NMR (400 MHz, CDCl ) δ: 0.09
352.1939; found: 352.1939.
3
(
9H, s 0.92 (3H, t, J = 7.3), 1.19 (3H, s), 1.20-1.37 (2H, m),
Ethyl 4-ethyl-2-methyl-5-oxo-2-(trimethylsilyl)oxolane-3-
carboxylate (8b)
1
1
2
.29 (3H, superimposed t, J = 7.3), 1.54 (1H, dddd, J = 13.3,
0.3, 6.8 and 3.5), 1.85 (1H, dddd, J = 13.6, 12.1, 9.5 and 5.0),
13
.48 (1H, dd, J = 11.8 and 3.5), 4.17 (2H, AB part of ABX3).
C
Diethylzinc (1.21 mL, 1 M in heptane, 2 equiv) was added
under argon to a room-temperature solution containing diethyl
fumarate (100 mg, 0.61 mmol, 1 equiv) and acetyltrimethylsilane
(96 µL, 0.67 mmol, 1.1 equiv) in non-degassed dichloromethane
(3 mL). After 18 h at room temperature, the reaction was
NMR (100 MHz, CDCl ) δ: -2.5 3xCH 14.2 (CH ), 14.5
3
3
3
(
(
[
CH ), 21.4 (CH ), 24.6 (CH ), 30.8 (CH ), 53.4 (CH), 60.3
CH ), 67.0 (C), 176.1 (C=O). HRMS (ESI): m/z: calcd for
3 2 3 2
2
+
MNa ] C H NaO Si: 269.1543; found: 269.1545.
12
26
3
quenched with saturated NH Cl. The layers were separated and
4
Ethyl
carboxylate (8a)
4-ethyl-5-oxo-2-phenyl-2-(trimethylsilyl)oxolane-3-
the aqueous layer was extracted twice with CH Cl . The
2
2
combined organic phases were dried (MgSO ), filtered and
4
Diethylzinc (0.62 mL, 1 M in heptane, 2 equiv) was added
under argon to a room-temperature solution containing diethyl
fumarate (50 µL, 0.31 mmol, 1 equiv) and benzoyltrimethylsilane
concentrated in vacuo. After purification by flash
chromatography on silica gel (pentane/ethyl acetate from 100/0
to 90/10) 8b was isolated as a mixture of two diastereomers in a
1
(60 mg, 0.34 mmol, 1.1 equiv) in non-degassed dichloromethane
1.7 mL). After 18 h at room temperature, the reaction was
52:48 ratio (130 mg, 0.48 mmol, 78%). Major diastereomer: H
(
NMR (400 MHz, CDCl ) δ: H, s 0.98 (3H, t, J
3
quenched with saturated NH Cl. The layers were separated and
= 7.5), 1.28 (3H, t, J = 7.5), 1.39 (3H, s), 1.55-1.68 (1H, m),
1.88-2.02 (1H, m), 2.70 (1H, dt, J = 5.5 and 8.8), 3.31 (1H, d, J =
4
the aqueous layer was extracted twice with CH Cl . The
2
2
13
combined organic phases were dried (MgSO ), filtered and
8.5), 4.20 (2H, q, J = 7.3). C NMR (100 MHz, CDCl ) δ: -
4
3
concentrated in vacuo. After purification by flash
chromatography on silica gel (pentane/ethyl acetate from 100/0
to 90/10) 8a was isolated as mixture of two diastereomers in a
3.3 3xCH 12.7 (CH ), 14.4 (CH ), 19.8 (CH ), 20.1
3
3
3
3
(CH ), 46.3 (CH), 50.5 (CH), 60.8 (CH ), 78.6 (C), 170.0 (C=O),
2
2
1
176.8 (C=O). Minor diastereomer: H NMR (400 MHz, CDCl )
3
8
1:19 ratio (66 mg, 0.20 mmol, 64%). A pure sample of the
δ: 0.12 H, s 1.00 (3H, t, J = 7.5), 1.27 (3H, t, J = 7.5),
1.42 (3H, s), 1.55-1.68 (1H, m), 1.88-2.02 (1H, m), 2.90 (1H,
ddd, J = 9.3, 7.8 and 5.5), 3.06 (1H, d, J= 7.5), 4.10-4.20 (2H,
major one could be separated from the chromatographic
fractions. Major diastereomer: H NMR (400 MHz, CDCl ) δ:
0
1
3
13
.06 (9H, s 0.73 (3H, t, J = 7.5), 1.07 (3H, t, J = 7.5), 1.42
m). C NMR (100 MHz, CDCl ) δ: -2.9 3xCH 12.7
3
3
(1H, ddq, J = 14.3, 9.5 and 7.5), 1.98 (1H, ddq, J = 14.3, 5.3 and
(CH ), 14.3 (CH ), 19.3 (CH ), 23.7 (CH ), 43.0 (CH), 52.9 (CH),
3 3 2 3
7
3
.5), 2.87 (1H, ddd, J = 9.3, 8.3 and 5.0), 3.65 (2H, q, J = 7.3),
.84 (1H, d, J = 8.3), 7.10-7.32 (5H, m). C NMR (100 MHz,
61.0 (CH ), 78.1 (C), 170.0 (C=O), 178.1 (C=O). HRMS (ESI):
2
13
+
m/z: calcd for [MH ] C H O Si: 273.1517; found: 273.1517.
13
25
4
CDCl ) δ: -2.9 (3xCH 12.7 (CH ), 13.5 (CH ), 20.4 (CH ),
3
3
3
3
2
4
1
6.7 (CH), 52.5 (CH), 60.6 (CH ), 84.3 (C), 126.4 (4x=CH),
Acknowledgments
2
28.1 (=CH), 140.7 (=C), 169.8 (C=O), 176.1 (C=O). Minor
1
diastereomer: H NMR (400 MHz, CDCl ) δ: -0.06 (9H,
The ANR is gratefully acknowledged for funding.
3
s 0.88 (3H, t, J = 7.5), 1.34 (3H, t, J = 7.5), 1.48 (1H, ddq, J
=
14.3, 9.3 and 7.3), 1.86 (1H, ddq, J = 15.3, 5.8 and 7.5), 2.33
(1H, ddd, J = 9.5, 7.0 and 5.8), 2.70-2.82 (1H, m), 3.59 (1H, d, J
References and notes
I. J. Am. Chem. Soc. 2003, 125, 12698–12699. (c) Lewinski, J.;
Sliwinski, W.; Dranka, M.; Justyniak, I.; Lipkowski, J. Angew. Chem.,
Int. Ed. 2006, 45, 4826–4829. (d) Lewinski, J.; Suwala, K.; Kubisiak,
M.; Ochal, Z.; Justyniak, I.; Lipkowski, J. Angew. Chem., Int. Ed.
1
.
For reviews and representative examples, see: (a) Bazin, S.; Feray, L.;
Bertrand, M. P. Chimia 2006, 60, 260–265. (b) Akindele, T.; Yamada,
K.-I.; Tomioka, K. Acc. Chem. Res. 2009, 42, 345–355. (c) Yamada,
K.-I.; Nakano, M.; Maekawa, M.; Akindele, T.; Tomioka, K. Org. Lett.
2
008, 47, 7888–7789. (e) Lewinski, J.; Suwala, K.; Kaczorowski, T.;
Galezowski, M.; Gryko, D. T.; Justyniak, I.; Lipkowski, J. Chem.
Commun. 2009, 215–217. (f) Lewinski, J.; Koscielski, M.; Suwala, K.;
Justyniak, I. Angew. Chem., Int. Ed. 2009, 48, 7017–7020. (g)
Makoski, L.; Zelga, K.; Petrus, R.; Kubicki, D.; Zarzycki, P.; Sobota,
P.; Lewinski, J. Chem.―Eur. J. 2014, 20, 14790-14799. (h) Kubisiak,
M.; Zelga, K.; Bury, W.; Justyniak, I.; Budny-Godlewski, K.; Ochal,
Z.; Lewinski, J. Chem. Sci. 2015, 6, 3102-3108.
2
008, 10, 3805-3808. (d) Yamada, K.-I.; Umeki, H.; Maekawa, M.;
Yamamoto, Y.; Akindele, T.; Nakano, M.; Tomioka, K. Tetrahedron
008, 64, 7258-7265. (e) Yamada, K.-I.; Maekawa, M.; Akindele, T.;
Yamamoto, Y.; Nakano, M.; Tomioka, K. Tetrahedron 2009, 65, 903-
08. (f) Cohen, T.; Gibney, H.; Ivanov, R.; Yeh, E. A.-H.; Marek, I.;
2
9
Curran, D. P. J. Am. Chem. Soc. 2007, 129, 15405-15409. (g) Huang,
W.; Ye, J.-L.; Zheng, W.; Dong, H.-Q.; Wei, B.-G. J. Org. Chem.
4
.
(a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett 1998,
2
013, 78, 11229-11237.
(a) Denes, F.; Cutri, S.; Pérez-Luna, A.; Chemla, F. Chem.―Eur. J.
006, 12, 6506-6513. (b) Giboulot, S.; Pérez-Luna, A.; Botuha, C.;
7
80-782. (b) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P.
2
.
.
Synlett 1999, 1148-1150. (c) Bertrand, M. P.; Feray, L.; Nouguier, R.;
Perfetti, P. J. Org. Chem. 1999, 64, 9189-9193. (d) Bertrand, M. P.;
Coantic, S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000, 56,
2
Ferreira, F.; Chemla, F. Tetrahedron Lett. 2008, 49, 3963-3966. (c)
Pérez-Luna, A.; Botuha, C.; Ferreira, F.; Chemla, F. Chem.―Eur. J.
3
2
951-3961. (e) Bertrand, M. P.; Feray, L.; Gastaldi, S. C. R. Chimie
002, 5, 623-638. (f) Cougnon, F.; Feray, L.; Bazin, S.; Bertrand, M.
2
008, 14, 8784-8788. (d) Chemla, F.; Dulong, F.; Ferreira, F.; Nüllen,
M. P.; Pérez-Luna A. Synthesis 2011, 1347-1360.
P. Tetrahedron 2007, 63, 11959-11964.
3
For mechanistic investigations of the reaction of alkylzincs with
dioxygen, see : (a) Maury, J.; Feray, L.; Bazin, S.; Clement, J.-L.;
Marque, S. R. A.; Siri, D.; Bertrand, M. P. Chem.―Eur. J. 2011, 17,
5.
For closely related studies, see: (a) Miyabe, H.; Nishimura, A.;
Fujishima, Y.; Naito, T. Tetrahedron 2003, 59, 1901-1907. (b) Miyabe,
H.; Konishi, C.; Naito, T. Org. Lett. 2000, 2, 1443-1445. (c) Miyabe,
H.; Ueda, M.; Yoshioka, N.; Yamakawa, K.; Naito, T. Tetrahedron
1
586-1595. (b) Lewinski, J.; Marciniac, W.; Lipkowski, J.; Justyniak,