Novel tag for high efficient analysis of cysteinyl-peptides
[11] S. E. Kulevich, B. L. Frey, G. Kreitinger, L. M. Smith.
Alkylating tryptic peptides to enhance electrospray ionization
mass spectrometry analysis. Anal. Chem. 2010, 82, 10135.
[12] J. A. Madsen, J. S. Brodbelt. Simplifying fragmentation
patterns of multiply charged peptides by N-terminal
derivatization and electron transfer collision activated
dissociation. Anal. Chem. 2009, 81, 3645.
[13] M. L. Hennrich, P. J. Boersema, H. van den Toorn,
N. Mischerikow, A. J. Heck, S. Mohammed. Effect of chemical
modifications on peptide fragmentation behavior upon elec-
tron transfer induced dissociation. Anal. Chem. 2009, 81, 7814.
[14] G. Chiappetta, S. Ndiaye, E. Demey, I. Haddad, G. Marino,
A. Amoresano, J. Vinh. Dansyl-peptides matrix-assisted laser
desorption/ionization mass spectrometric (MALDI-MS) and
tandem mass spectrometric (MS/MS) features improve the
liquid chromatography/MALDI-MS/MS analysis of the
proteome. Rapid Commun. Mass Spectrom. 2010, 24, 3021.
[15] J. S. Kim, J. H. Kim, H. J. Kim. Matrix-assisted laser
desorption/ionization signal enhancement of peptides by
picolinamidination of amino groups. Rapid Commun. Mass
Spectrom. 2008, 22, 495.
CONCLUSIONS
An imidazolium-based aromatic quaternary ammonium
tag, IPBI, was designed, synthesized, and further exploited
for cysteinyl-peptide derivatization. The high derivatization
efficiency and superior stability of IPBI derivatives could
ensure good reproducibility of sample labeling. Once peptides
have been labeled with IPBI, the group with strong gas-phase
basicity and a permanent positive charge could be introduced.
Thus, both the ionization efficiency and charge states of
derivatized peptides could be remarkably improved, which
was proved by applying the developed tag to derivatize both
standard peptides and tryptic protein digests. We expect the
novel tag will be very promising in high-efficiency cysteinyl-
peptide identification, especially those with low abundance
and poor ionization efficiency.
Acknowledgements
[16] Y. Xu, L. Zhang, H. Lu, P. Yang. Mass spectrometry analysis
of phosphopeptides after peptide carboxy group
derivatization. Anal. Chem. 2008, 80, 8324.
[17] L. Zhang, Y. Xu, H. Lu, P. Yang. Carboxy group derivatization
for enhanced electron-transfer dissociation mass spectrometric
analysis of phosphopeptides. Proteomics 2009, 9, 4093.
We are grateful for the financial support from the National
Natural Science Foundation of China (21205027), the
National Basic Research Program of China (2012CB910604)
and the Natural Science Foundation of Hebei Province
(B2012201095, B2012201052).
[18] X. Qiao, L. Sun, L. Chen, Y. Zhou, K. Yang, Z. Liang,
L. Zhang, Y. Zhang. Piperazines for peptide carboxyl group
derivatization: effect of derivatization reagents and
properties of peptides on signal enhancement in matrix-
assisted laser desorption/ionization mass spectrometry.
Rapid Commun. Mass Spectrom. 2011, 25, 639.
[19] B. L. Frey, D. T. Ladror, S. B. Sondalle, C. J. Krusemark,
A. L. Jue, J. J. Coon, L. M. Smith. Chemical derivatization of
peptide carboxyl groups for highly efficient electron transfer
dissociation. J. Am. Soc. Mass Spectrom. 2013, 24, 1710.
[20] B. J. Ko, J. S. Brodbelt. Enhanced electron transfer dissociation
of peptides modified at C-terminus with fixed charges. J. Am.
Soc. Mass Spectrom. 2012, 23, 1991.
[21] J. Leng, H. Wang, L. Zhang, J. Zhang, H. Wang, Y. Guo. A
highly sensitive isotope-coded derivatization method and
its application for the mass spectrometric analysis of
analytes containing the carboxyl group. Anal. Chim. Acta
2013, 758, 114.
[22] N. Mano, S. Aoki, T. Yamazaki, Y. Nagaya, M. Mori, K. Abe,
M. Shimada, H. Yamaguchi, T. Goto, J. Goto. Analysis
of phosphorylated peptides by double pseudoneutral
loss extraction coupled with derivatization using N-(4-
bromobenzoyl)aminoethanethiol. Anal. Chem. 2009, 81, 9395.
[23] H. Tsumoto, M. Ra, K. Samejima, R. Taguchi, K. Kohda.
Chemical derivatization of peptides containing phosphorylated
serine/threonine for efficient ionization and quantification in
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 965.
[24] M. Watanabe, K. Terasawa, K. Kaneshiro, H. Uchimura,
R. Yamamoto, Y. Fukuyama, K. Shimizu, T. A. Sato, K. Tanaka.
Improvement of mass spectrometry analysis of glycoproteins
by MALDI-MS using 3-aminoquinoline/alpha-cyano-4-
hydroxycinnamic acid. Anal. Bioanal. Chem. 2013, 405, 4289.
[25] Y. H. Ahn, E. S. Ji, J. Y. Lee, K. Cho, J. S. Yoo. Arginine-mimic
labeling with guanidinoethanethiol to increase mass sensitivity
of lysine-terminated phosphopeptides by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry.
Rapid Commun. Mass Spectrom. 2007, 21, 2204.
REFERENCES
[1] R. Aebersold, M. Mann. Mass spectrometry-based proteomics.
Nature 2003, 422, 198.
[2] B. T. Chait. Mass spectrometry: Bottom-up or top-down?
Science 2006, 314, 65.
[3] X. Qiao, D. Tao, Y. Qu, L. Sun, L. Gao, X. Zhang, Z. Liang,
L. Zhang, Y. Zhang. Large-scale N-glycoproteome map of
rat brain tissue: simultaneous characterization of insoluble
and soluble protein fractions. Proteomics 2011, 11, 4274.
[4] A. A. Lobas, A. N. Verenchikov, A. A. Goloborodko, L. I. Levitsky,
M. V. Gorshkov. Combination of Edman degradation of
peptides with liquid chromatography/mass spectrometry
workflow for peptide identification in bottom-up
proteomics. Rapid Commun. Mass Spectrom. 2013, 27, 391.
[5] A. Pashkova, E. Moskovets, B. L. Karger. Coumarin tags for
improved analysis of peptides by MALDI-TOF MS and
MS/MS. 1. Enhancement in MALDI MS signal intensities.
Anal. Chem. 2004, 76, 4550.
[6] G. Hart-Smith, M. J. Raftery. Detection and characterization
of low abundance glycopeptides via higher-energy C-trap
dissociation and orbitrap mass analysis. J. Am. Soc. Mass
Spectrom. 2012, 23, 124.
[7] F. Xu, L. Zou, Y. Liu, Z. Zhang, C. N. Ong. Enhancement of
the capabilities of liquid chromatography-mass spectrometry
with derivatization: general principles and applications. Mass
Spectrom. Rev. 2011, 30, 1143.
[8] J. Zhang, R. Al-Eryani, H. L. Ball. Mass spectrometry
analysis of 2-nitrophenylhydrazine carboxy derivatized
peptides. J. Am. Soc. Mass Spectrom. 2011, 22, 1958.
[9] Y. An, Z. Schwartz, G. P. Jackson. δ13C analysis of amino
acids in human hair using trimethylsilyl derivatives and
gas chromatography/combustion/isotope ratio mass
spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1481.
[10] M. Miyashita, Y. Hanai, H. Awane, T. Yoshikawa, H. Miyagawa.
Improving peptide fragmentation by N-terminal derivatization
with high proton affinity. Rapid Commun. Mass Spectrom. 2011,
25, 1130.
[26] P. Giron, L. Dayon, J. C. Sanchez. Cysteine tagging for MS-
based proteomics. Mass Spectrom. Rev. 2011, 30, 366.
Rapid Commun. Mass Spectrom. 2014, 28, 256–264
Copyright © 2013 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/rcm