C. D. Della Rosa et al. / Tetrahedron Letters 52 (2011) 2316–2319
2319
Table 5
7075–7078; (c) Della Rosa, C.; Paredes, E.; Kneeteman, M.; Mancini, P. M. E.
Lett. Org. Chem. 2004, 1, 369–371.
3. Liu, Z.; Larock, R. Org. Lett. 2004, 6, 3739–3741.
4. (a) Kokubun, T.; Harborne, J. B.; Eagles, J.; Waterman, P. Phytochemistry 1995,
39, 1039–1042; (b) Miller, R.; Kleiman, R.; Powell, R. J. Natural Products 1988,
51, 328–330; (c) Hussain, M.; Hung, N. T.; Langer, P. Tetrahedron Lett. 2009, 50,
3929–3933.
5. Brasca, R.; Kneeteman, M. N.; Mancini, P. M. E.; Fabian, W. M. F. J. Mol.
Struct.(THEOCHEM) 2009, 911, 124–131.
Local electrophilicity indexes for dienophiles 1a and 1b
Dienophile
Site
xk (eV)
1a
2
3
2
3
0.1571
0.5359
0.7263
0.0482
1b
6. General Procedure for the thermal reactions of nitrobenzofurans.
The temperature, the length of the reaction, and the diene/dienophile ratio
were dependent on the starting material and are indicated in Tables 1 and 2. An
ampule containing a solution of 1.0 mmol of the dienophile and the required
amount of diene in 0.5 ml of dry benzene was cooled in liquid nitrogen, sealed,
and then heated in an oil bath. After the reaction time was completed, it was
cooled once more in liquid nitrogen and opened. The solution was evaporated
and the residue purified by column chromatography on silica gel or alumina
using hexane/ethyl acetate mixtures as eluent.
7. (a) Parr, R. G.; Yang, W. In: Density Functional Theory of Atoms and Molecules;
Oxford University Press: Oxford, UK, 1989; (b) Parr, R. G.; Pearson, R. G. J. Am.
Chem. Soc. 1983, 105, 7512; (c) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533;
(d) Janak, J. R. Phys. Rev. B 1978, 18, 7165.
Table 6
Local nucleophilicity index for dienes 2, 3, 4
Diene
Site
Nk (eV)
2
1
4
1
4
1
4
1.1183
0.7519
0.7496
0.9281
0.5441
1.3401
3
4
8. Parr, R. G.; Von Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.
9. (a) Domingo, L. R.; Aurell, M. J.; Contreras, R. Tetrahedron 2002, 58, 4417; (b)
Pérez, P.; Domingo, L. R.; Aurell, M. J.; Contreras, R. Tetrahedron 2003, 59, 3117.
10. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.
11. (a) Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113, 2544; (b)
Contreras, R.; Fuentealba, P.; Galván, M.; Pérez, P. Chem. Phys. Lett. 1999, 304,
405.
12. Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. J. Phys. Chem. A 2002, 106,
6871.
13. Pérez, P.; Domingo, L. R.; Duque-Noreña, M.; Chamorro, E. J. Mol.
Struct.(THEOCHEM) 2009, 895, 86.
in 1a and 1b and C1 and C4 in dienes 2, 3, and 4. The more favored
adducts are the ones where the most electrophilic and nucleophilic
sites interact first. In the reactions in which it is possible to discuss
regioselectivity, the experimental data agree with the computa-
tional results. However, the influence of the methyl group when
the diene is isoprene is smaller than that of the groups present in
Danishesfky’s diene.
14. (a) Domingo, L. R.; Chamorro, E.; Pérez, P. J. Org. Chem. 2008, 73, 4615; (b)
Jaramillo, P.; Domingo, L. R.; Chamorro, E.; Perez, P. J. Mol. Struct.(THEOCHEM)
2008, 865, 68.
4. Conclusions
15. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G.
Phys. Rev. B 1988, 37, 785.
16. Frisch, M. J. et al., Gaussian 03, Revision B.04, Gaussian Inc., Pittsburgh, PA,
2003.
When 2-nitrobenzofuran and 3-nitrobenzofuran were reacted
with the above mentioned dienes under different reaction condi-
tions, they showed their dienophilic character taking part in a nor-
mal demand D–A cycloaddition reactions. These reactions could be
considered a domino process that is initiated by a polar D–A reaction
and the subsequent concerted elimination of nitrous acid from the
[4 + 2] cycloadduct to yield the corresponding dibenzofurans.17,18
A very strong electron-acceptor group, such as a nitro group, in-
duces a similar reactivity at 2- and 3-positions in the benzofuran
ring. The ease of thermal extrusion of nitrous acid accompanying
the D–A reaction of 2- and 3-nitrobenzofurans followed by the fur-
ther aromatization makes this reaction sequence a simple, eco-
nomical and efficient method of dibenzofurans preparation,
which is a direct intermediate in the synthesis of important hetero-
atom compounds which display a wide variety of biological
activities.
DFT calculations of the electrophilicity and nucleophilicity in-
dexes agree with the experimental results and they are good reac-
tivity and regioselectivity predictors in these types of reactions.
The 2-nitrosubstituted benzofuran shows higher electrophilic-
ity power than the 3-nitrosubstituted benzofuran probably due
to the proximity of the nitro group with the heteroatom (see
Table 4).
17. General Aspects. 1H and 13C NMR spectra were recorded in CDCl3 on 300 and
75 MHz FT-spectrometers, respectively, using TMS as the internal standard;
GC–MS analyses were performed in an instrument equipped with a PE-5-type
column. IR spectra were recorded from NaCl cells. Melting points were
observed on a Winkle–Zeiss Gottingen microhot stage and were uncorrected.
The silica gel and neutral alumina used for chromatography were 70–
230 mesh. The syntheses of 2- and 3-nitrobenzofurans were performed
starting from benzofuran adapting a procedure proposed by Katritzky et al.
Synthesis 5, 699-706-2008. Other reagents were obtained from commercial
sources used as received or purified as required by standard methods.
18. Spectral data: Compound 5a 1H NMR (CDCl3) d: 1.57 (s, 3H), 6.91 (dd,
J = 7.6 Hz J = 2.1 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.78–7.80 (m, 2H); 8.20 (dd,
J = 8.4 Hz J = 1.1 Hz, 1H), 8.42 (d, J = 7.9 Hz, 1H), 8.56 (dd, J = 8.2 Hz, J = 1.5 Hz,
1H), 13C NMR (CDCl3) d: 23.6; 111.6; 111.8; 113.5; 121.2; 124.8; 125.9, 132.0;
132.8; 136.6, 146.5; 156.2. HRMS m/z 182.2226 (Calcd C13H10O 182.2218).
Compound 5b 1H NMR (CDCl3) d: 1.56 (s, 3H); 6.95(dd, J = 7.7 Hz, 1.2 Hz, 1H),
7.71 (d, J = 2.1 Hz, 1H); 7.78–7.80 (m, 2H); 8.18 (d, J = 7.8 Hz, 1H), 8.20 (dd,
J = 7.6 Hz, J = 1.2 Hz, 1H), 8.45 (dd, J = 7.8 Hz, J = 1.3 Hz, 1H) 13C NMR (CDCl3) d:
23.5; 111.7; 114.5; 120.8; 122.5; 123.6; 124.0; 126.3; 132.7; 135.6; 146.5;
155.2. HRMS m/z 182.2224 (Calcd C13H10O 182.2218). Compound 6a 1H NMR
(CDCl3) d: 1.93 (s, 3H); 3.31 (m, 2H); 3.44 (m, 2H), 5.64 (m, 1H), 7.52 (m, 2H);
7.65 (t, J = 1H); 7.91 (t, J = 1H). 13C NMR (CDCl3) d: 19.5; 22.5; 33.1; 112.4;
112.8; 120.3; 121.7; 123.8; 125.3; 132.2; 135.8; 150.7; 154.1. HRMS m/z
184.2415 (Calcd C13H12O 184.2399). Compound 6b 1H NMR (CDCl3) d: 1.92 (s,
3H); 3.31 (m, 2H); 3.44 (m, 2H); 5.72 (m, 1H); 7.52 (m, 2H); 7.65 (dd, J = 8.1 Hz,
0.9 Hz, 1H); 7.91 (dd, J = 7.31 Hz, 1.1 Hz, 1H). 13C NMR (CDCl3) d: 22.1; 24.2;
29.1; 112.4; 112.8; 119.8; 121.5, 123.8, 124.9, 131.5, 135.5, 149.8, 154.2. HRMS
m/z 184.2413 (Calcd C13H12O 184.2399). 7 Spectral data identical with those of
commercial material. Compound 8a 1H NMR (CDCl3) d : 5.21 (br s, 1H), 6.80
(dd, 1H, J = 7.8 Hz, J = 1.9 Hz), 7.02 (d, 1H, J = 2.1 Hz), 7.78–7.80 (m, 2H); 7.95
Acknowledgments
(d, J = 7.8 Hz, 1H); 8,21(dd, J = 7.6, J = 1.2, 1H), 8.43 (dd, J = 7.8, J = 1.3, 1H). 13
C
NMR (CDCl3) d: 107.6; 112.1; 114.5; 117.5; 122.8; 125.7; 137.2; 146.8; 150.1;
155.1. HRMS m/z 184.1952 (Calcd C12H8O2 184.1943). Compound 8b: 1H NMR
(CDCl3) d: 5.21 (br s, 1H), 6.85 (dd, J = 7.8 Hz, J = 1.9 Hz, 1H); 7.02 (d, J = 108 Hz,
1H), 7.78–7.80 (m, 2H); 7.91(d, J = 8.0 Hz, 1H), 8.20 (dd, J = 7.8 Hz J = 1.9 Hz,
1H), 8.56 (dd, J = 7.9 Hz, J = 2.0 Hz, 1H), 13C NMR (CDCl3) d: 105.5;112.1; 114.5;
118.5; 122.5; 126.7; 135.2; 144.8; 157.1; 159.1. HRMS m/z 184.1954 (Calcd
This research was supported by CAI+D at Universidad Nacional
del Litoral, Santa Fe, Rep. Argentina.
References and notes
C
12H8O2 184.1943). Compound 9 1H NMR (CDCl3) d: 0.20 (s, 6H), 1.05 (s, 9H),
1. For general review, see: (a) Carruthers, W. In: Cycloaddition Reactions in Organic
Snthesis; Pergamon Press: Oxford, UK, 1990; (b) Fringelli, F.; Tatichi, A. In: The
Diels–Alder Reaction; J. Wiley & Sons: Chichester, UK, 2002; (c) Corey, E. J.
Angew. Chem. Int. Ed. 2002, 41, 1650–1667.
2. (a) Della Rosa, C.; Kneeteman, M.; Mancini, P. Tetrahedron Lett. 2007, 48, 1435–
1438; (b) Della Rosa, C.; Kneeteman, M.; Mancini, P. Tetrahedron Lett. 2007, 48,
6.90 (dd, 1H, J = 8.0 Hz, J = 1.9 Hz), 6.93 (d, 1H; J = 3.8 Hz), 7.78–7.80 (m, 2H);
7.98 (d, J = 7.7 Hz, 1H); 8,21(dd, J = 7.6, J = 1.2, 1H), 8.43 (dd, J = 7.8, J = 1.3, 1H).;
13C NMR (CDCl3) d: ꢀ4.4, 18.7, 25.7, 109.3, 111.6, 112.0, 114.1, 120.5; 122.2;
125.2; 126.6; 138.1; 145.5; 152.2; 154.0. HRMS m/z 298.4582 (Calcd
C18H22O2Si 298.4574).