Job/Unit: O43214
/KAP1
Date: 21-11-14 13:19:57
Pages: 8
Z. Dalicsek, I. Pápai, T. Soós et al.
SHORT COMMUNICATION
[7]
a) P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Y. Ti-
khonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P.
Dahl, R. M. K. Carlson, A. A. Fokin, J. Magano, J. R. Dunetz,
Nature 2011, 477, 308–311; b) S. Grimme, P. R. Schreiner, An-
gew. Chem. Int. Ed. 2011, 50, 12639–12642; Angew. Chem.
2011, 123, 12849–12853.
a) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49,
46–76; Angew. Chem. 2010, 122, 50–81; b) T. A. Rokob, A.
Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed.
2008, 47, 2435–2438; Angew. Chem. 2008, 120, 2469–2472.
This complex was patented: Z. Dalicsek, T. Soós, Z. Finta, G.
Timári, G. Vlád, H4Sep Kft., Chinoin Gyógyszer - és Vegyész-
eti Termékek Gyára Zrt., WO 2012/093271 A1, 2012.
Z. Dalicsek, F. Pollreisz, T. Soós, Chem. Commun. 2009, 4587.
a) J. Tsuji, Palladium Reagents and Catalysts: Innovations in
Organic Synthesis Wiley, Chichester, UK, 2004; b) Á. Molnár
(Ed.), Palladium-Catalysed Coupling Reactions, Wiley-VCH,
Weinheim, Germany, 2013.
For recent reviews, see: a) R. Martin, S. L. Buchwald, Acc.
Chem. Res. 2008, 41, 1461–1473; b) C. Torborg, M. Beller, Adv.
Synth. Catal. 2009, 351, 3027–3043; c) N. E. Leadbeater, Nat.
Chem. 2010, 2, 1007–1009; d) J. Magano, J. R. Dunetz, Chem.
Rev. 2011, 111, 2177–2250; e) C. C. C. Johansson Seechurn,
M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem. Int.
Ed. 2012, 51, 5062–5085; Angew. Chem. 2012, 124, 5150–5174;
f) R. J. Lundgren, M. Stradiotto, Chem. Eur. J. 2012, 18, 9758–
9769; g) H. Li, C. C. C. J. Seechurn, T. J. Colacot, ACS Catal.
2012, 2, 1147–1164; h) N. C. Bruno, M. T. Tudge, S. L. Buch-
wald, Chem. Sci. 2013, 4, 916–920.
of the complex toward ligand dissociation. This “super-
stable” Pd0 system is a thermally, air, and moisture stable
tricoordinate complex, and it was shown to be an efficient
and robust promoter for Suzuki coupling reactions. Appli-
cation of additive ligands (e.g., dppb), a user-friendly for-
mulation, and simple immobilization techniques underline
the practicality of this catalyst. Our present results may en-
courage further investigations to gain more insight into the
role of stabilizing ligand–ligand interactions[37] in homogen-
eous transition-metal catalysis, which can advance the field
of catalyst developments further. Additional applications of
this Pd catalyst in various cross-coupling reactions and C–
H activations will be reported in due course.
[8]
[9]
[10]
[11]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data, spectroscopic
data, theoretical calculation details, and crystallographic data.
[12]
CCDC-995867 (for Lt1 of 2) and -995868 (for Lt2 of 2) contain
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Acknowledgments
[13]
[14]
[15]
The estimated annual usage is 10 tons.
T. S. is grateful to the Lendület Foundation for financial support.
This work was also supported by Hungarian Scientific Research
Fund (OTKA) (grant number K-81927). The authors thank Dr.
Mihály Braun for MP-AES measurements and Dr. Lajos Nagy for
MALDI-TOF MS measurements. The authors also thank Dr. Pe-
tra Bombicz, Dr. László Filák, and Norbert Koch for helpful dis-
cussions.
G. Mann, J. F. Hartwig, Tetrahedron Lett. 1997, 38, 8005–8008.
a) O. René, K. Fagnou, Adv. Synth. Catal. 2010, 352, 2116–
2120; b) M. Lafrance, D. Lapointe, K. Fagnou, Tetrahedron
2008, 64, 6015–6020; c) L. C. Campeau, M. Parisien, M. Lebl-
anc, K. Fagnou, J. Am. Chem. Soc. 2004, 126, 9186–9187.
C. Huang, V. Gevorgyan, Org. Lett. 2010, 12, 2442–2445.
J. Hitce, P. Retailleau, O. Baudoin, Chem. Eur. J. 2007, 13, 792–
799.
[16]
[17]
[18]
[19]
a) L. Malatesia, M. Angoletta, J. Chem. Soc. 1957, 1186–1188;
b) D. R. Coulson, L. C. Satek, S. O. Grim, Inorg. Synth. 1972,
13, 121.
[1] For textbooks, see: a) E. V. Anslyn, D. A. Dougherty, Modern
Physical Organic Chemistry, University Science Books, Sausal-
ito, CA, 2005; b) P. Hobza, K. M. Dethlefs, Non-Covalent In-
teractions: Theory and Experiment, Royal Society of Chemistry,
London, 2010; c) J. W. Steed, J. L. Atwood, Supramolecular
Chemistry, Wiley, Chichester, UK, 2009.
[2] For proteins and supramolecular architectures, see: a) S. K.
Burley, G. A. Petsko, Science 1985, 229, 23–28; b) J. T. Kellis,
D. K. Nyberg, D. Sali, A. R. Fersht, Nature 1985, 333, 784–
786; c) J. W. Steed, Chem. Commun. 2011, 47, 1379–1383; d) K.
Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S.
Sponberg, T. W. Kenny, R. Fearing, J. N. Israelachvili, R. J.
Full, Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256; e)
G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311–
2327; Angew. Chem. 1995, 107, 2541–2558.
[3] For molecular recognition and stereocontrol, see: a) S. H. Gell-
man (Ed.), Chem. Rev. 1997, 97(5) (special edition); b) K.
Ariga, H. Ito, J. P. Hill, H. Tsukube, Chem. Soc. Rev. 2012, 41,
5800–5835; c) L. A. Joyce, S. H. Shabbira, E. V. Anslyn, Chem.
Soc. Rev. 2010, 39, 3621–3632; d) R. R. Knowles, E. N. Ja-
cobsen, Proc. Natl. Acad. Sci. USA 2010, 107, 20678–20685; e)
S. Carboni, C. Gennari, L. Pignataro, U. Piarulli, Dalton Trans.
2011, 40, 4355–4373; f) E. Hartmann, R. M. Gschwind, Angew.
Chem. Int. Ed. 2013, 52, 2350–2354; Angew. Chem. 2013, 125,
2406–2410.
[4] M. S. G. Ahlquist, P. O. Norrby, Angew. Chem. Int. Ed. 2011,
50, 11794–11797; Angew. Chem. 2011, 123, 11998–12001.
[5] X. Xu, B. Pooi, H. Hirao, S. H. Hong, Angew. Chem. Int. Ed.
2014, 53, 1283–1287; Angew. Chem. 2014, 126, 1307–1311.
[6] B. D. Rekken, T. M. Brown, J. C. Fettinger, F. Lips, H. M.
Tuononen, R. H. Herber, P. P. Power, J. Am. Chem. Soc. 2013,
135, 10134–10148.
For selected examples of other storable Pd precatalysts, see: a)
K. Selvakumar, A. Zapf, A. Spannenberg, M. Beller, Chem.
Eur. J. 2002, 8, 3901–3906; b) K. Selvakumar, A. Zapf, M.
Beller, Org. Lett. 2002, 4, 3031–3033; c) N. Marion, S. P. Nolan,
Acc. Chem. Res. 2008, 41, 1440–1449; d) M. G. Organ, S. Av-
ola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien,
C. Valente, Chem. Eur. J. 2006, 12, 4749–4755; e) J. Nasielski,
N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O’Brien, A.
Lough, M. G. Organ, Chem. Eur. J. 2010, 16, 10844–10853; f)
M. A. Grundl, J. J. Kennedy-Smith, D. Trauner, Organometal-
lics 2005, 24, 2831–2833.
The energetics reported in this work refer to gas-phase elec-
tronic energies obtained from B3LYP-D3/SDDP calculations.
This approach assumes that the trend of the relative stabilities
is not affected by the inclusion of entropic and solvent effects.
For discussion of this issue and further computational details,
see the Supporting Information. For the importance of using
dispersion-corrected functionals in computational studies of
organometallic catalysis, see: N. Fey, B. M. Ridgway, J. Jover,
C. L. McMullin, J. N. Harvey, Dalton Trans. 2011, 40, 11184–
11191.
[20]
[21]
[22]
For details, see the Supporting Information.
F
Another stable bent isomer of Pd(P )2 featuring only T-type
aryl–aryl interactions was identified computationally (see the
Supporting Information).
[23]
C–F···π type intermolecular contacts between perfluorinated
aromatic groups have previously been recognized as specific
noncovalent interactions that influence the crystal architecture
of fluoro-organic compounds, see: a) T. V. Rybalova, I. Y. Bag-
6
www.eurjoc.org
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 0000, 0–0