STABLE AZOMETHINE IMINES HAVING A 3,4-DIHYDROISOQUINOLINE FRAGMENT
545
1
imide. According to the H NMR data, the ratio of
stereoisomers VIj and VIIj in the reaction mixture
was ~8:92.
(3H, Harom), 7.52 d (2H, Harom, J = 8.5 Hz), 7.92 d (2H,
arom, J = 8.7 Hz). 13C NMR spectrum (CDCl3), δC,
H
ppm: 29.5 (CH2), 50.2 (CH2), 50.3 (CH), 55.5 (OCH3),
59.7 (CH), 65.9 (CH), 113.2 (2C, CHarom), 122.6
(Carom), 125.4 (Carom), 126.3 (CHarom), 127.3 (2C,
CHarom), 128.0 (CHarom), 128.6 (CHarom), 128.9
(CHarom), 129.3 (Carom), 130.6 (Carom), 131.5 (2C,
CHarom), 132.4 (2C, CHarom), 133.0 (Carom), 162.2
(Carom), 170.5 (C=O), 172.9 (C=O), 173.4 (C=O).
Found, %: C 60.88; H 4.22; N 7.63. C27H22BrN3O4.
Calculated, %: C 60.91; H 4.17; N 7.89.
Compound VIj. Some signals in the 1H NMR spec-
trum of mixture VIj/VIIj (DMSO-d6), δ, ppm: 3.81 m
(1H, CH2, J = 8.4 Hz), 4.78 m (1H, CH2), 5.69 d (1H,
CH2, J = 8.4 Hz), 8.01 d (2H, Harom, J = 7.8 Hz).
Compound VIIj. Yield 316 mg (61%), mp 255–
256°C. IR spectrum, ν, cm–1: 3040, 3010, 2970, 2930,
2860, 1800, 1720 v.s, 1650, 1605, 1495, 1380 s, 1325,
1
1305, 1285, 1260, 1180 s, 1130, 1080, 1020. H NMR
spectrum (CDCl3), δ, ppm: 2.38 (3H, Me), 2.72 m (1H,
CH2), 2.85 m (1H, CH2), 3.03 m (1H, CH2), 3.46 m
(1H, CH2), 4.07 d.d (1H, CH, J = 8.7, 9.0 Hz), 4.74 d
(1H, CH, J = 9.0 Hz), 6.09 d (1H, CH, J = 8.7 Hz),
7.01–7.14 m (3H, Harom), 7.16–7.39 m (5H, Harom),
7.52 d (2H, Harom, J = 8.5 Hz), 7.76 d (2H, Harom, J =
8.1 Hz). 13C NMR spectrum (DMSO-d6), δC, ppm:
21.0 (CH3), 28.8 (CH2), 49.5 (CH2), 50.2 (CH), 60.1
(CH), 64.5 (CH), 121.5 (Carom), 125.6 (CHarom), 127.0
(CHarom), 128.1 (CHarom), 128.3 (2C, CHarom), 128.4
(4C, CHarom), 129.0 (CHarom), 130.1 (Carom), 131.2
(Carom), 131.3 (Carom), 132.1 (2C, CHarom), 132.8
(Carom), 140.7 (Carom), 171.4 (C=O), 173.6 (C=O),
174.0 (C=O). Found, %: C 62.71; H 4.24; N 8.01.
C27H22BrN3O3. Calculated, %: C 62.80; H 4.29; N 8.14.
REFERENCES
1. Grashey, R., 1,3-Dipolar Cycloaddition Chemistry,
Padwa, A., Ed., New York: Wiley, 1984, chap. 1, p. 733;
Rodina, L.L., Kolberg, A., and Schulze, B., Hetero-
cycles, 1998, vol. 49, p. 587.
2. Tomaschewski, G., Klein, V., and Geissler, G., Tetra-
hedron Lett, 1980, vol. 21, p. 4877.
3. Trofimov, V.V., Koptelov, Yu.B., Molchanov, A.P., and
Kostikov, R.R., Russ. J. Org. Chem., 1994, vol. 30,
p. 1389; Molchanov, A.P., Sipkin, D.I., Koptelov, Yu.B.,
and Kostikov, R.R., Synlett, 2000, p. 1779.
4. Heine, H.W., Baclawski, L.M., Bonser, S.H., and
Wachob, G.D., J. Org. Chem., 1976, vol. 41, p. 3229;
Heine, H.W. and Heitz, L., J. Org. Chem., 1974, vol. 39,
p. 3192.
rel-(8aR,11aS,11bR)-10-(4-Bromophenyl)-8-(4-
methoxybenzoyl)perhydropyrrolo[3′,4′:3,4]pyra-
zolo[5,1-a]isoquinoline-9,11-dione (VIk) and rel-
(8aR,11aS,11bS)-10-(4-bromophenyl)-8-(4-methoxy-
benzoyl)perhydropyrrolo[3′,4′:3,4]pyrazolo[5,1-a]-
isoquinoline-9,11-dione (VIIk) were obtained from
azomethine imine IIb and N-(4-bromophenyl)male-
5. Schulz, M. and West, G., J. Prakt. Chem., 1970,
vol. 312, p. 161; Geissler, G., Menz, I., Angermüller, K.,
and Tomaschewski, G., J. Prakt. Chem., 1983, vol. 325,
p. 197; Geissler, G., Fust, W., Krüger, B., and Toma-
schewski, G., J. Prakt. Chem., 1983, vol. 325, p. 205.
6. Ortega, H., Ahmed, S., and Alper, H., Synthesis, 2007,
p. 3683.
1
imide. According to the H NMR data, the ratio of
stereoisomers VIk and VIIk in the reaction mixture
7. Schmitz, E. and Ohme, R., Chem. Ber., 1962, vol. 95,
p. 2012.
was ~8:92.
8. Koptelov, Yu.B., Saik, S.P., and Molchanov, A.P., Khim.
Geterotsikl. Soedin., 2008, p. 1071.
Compound VIk. Some signals in the 1H NMR spec-
trum of mixture VIk/VIIk (DMSO-d6), δ, ppm: 3.80 m
(1H, CH2, J = 8.8 Hz), 4.78 m (1H, CH2), 5.70 d (1H,
CH2, J = 8.5 Hz), 8.14 d (2H, Harom, J = 7.8 Hz).
9. Truce, W.E. and Allison, J.R., J. Org. Chem., 1975,
vol. 40, p. 2260.
10. Hashimoto, T., Maeda, Y., Omote, M., Nakatsu, H.,
and Maruoka, K., J. Am. Chem. Soc., 2010, vol. 132,
p. 4076.
11. Saik, S.P., Koptelov, Yu.B., and Molchanov, A.P., Vestn.
Sankt-Peterb. Gos. Univ., Ser. 4: Fiz.-Khim., 2009,
p. 88.
Compound VIIk. Yield 390 mg (73%), mp 207–
208°C. IR spectrum, ν, cm–1: 3010, 2970, 2935, 2850,
1800, 1720 v.s, 1650, 1605, 1510, 1495, 1375 s, 1330,
1
1305, 1260, 1180 s, 1130, 1080, 1040, 1020. H NMR
spectrum (CDCl3), δ, ppm: 2.74 m (1H, CH2), 2.86 m
(1H, CH2), 3.08 m (1H, CH2), 3.46 m (1H, CH2), 3.84
(3H, OMe), 4.06 d.d (1H, CH, J = 8.7, 8.9 Hz), 4.76 d
(1H, CH, J = 8.9 Hz), 6.10 d (1H, CH, J = 8.7 Hz),
6.89 d (2H, Harom, J = 8.7 Hz), 7.05 d (2H, Harom, J =
8.5 Hz), 7.11 d (1H, Harom, J = 6.5 Hz), 7.18–7.40 m
12. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuse-
ria, G.E., Robb, M.A., Cheeseman, J.R., Montgo-
mery, J.A.Jr.,, Vreven, T., Kudin, K.N., Burant, J.C.,
Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V.,
Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Peter-
sson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyo-
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 4 2011