Printing procedure
3 D. B. Weibel, P. Garstecki and G. M. Whitesides, Curr. Opin. Neurobiol.,
2005, 15, 560–567.
4 M. J. W. Ludden, J. K. Sinha, G. Wittstock, D. N. Reinhoudt and J.
Huskens, Org. Biomol. Chem., 2008, 6, 1553–1557.
5 K. Ichimura, S. K. Oh and M. Nakagawa, Science, 2000, 288, 1624–
1626.
6 M. Kleinert, T. Winkler, A. Terfort and T. K. Lindhorst, Org. Biomol.
Chem., 2008, 6, 2118–2132.
7 Y. Xia and G. M. Whitesides, Angew. Chem., Int. Ed., 1998, 37,
550.
8 S. A. Ruiz and C. S. Chen, Soft Matter, 2007, 3, 168.
9 A. Perl, D. N. Reinhoudt and J. Huskens, Adv. Mater., 2009, 21,
2257.
10 T. Kaufmann and B. J. Ravoo, Polym. Chem., 2010, 1, 371.
11 A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 1993, 63,
2002–2004.
The dry stamp was inked for 1 min by placing drops of ink on
the patterned side of the stamp or by dipping the stamp into ink
solution. The stamp was dried with compressed air and placed
with the patterned side onto the cleaned and dried substrate. After
contact any further movement is avoided. A weight of 20 g is
put on top of the stamp to ensure conformal contact. After the
desired printing time the stamp plus weight was removed in one
move. The substrate was rinsed vigorously with ethanol, sonicated
for 30 s and rinsed again with ethanol to remove all physisorbed
ink and contamination. The printed substrates were investigated
with a fluorescence microscope (Olympus) and micrographs are
taken with a digital camera (Kappa). Identical parameter settings
(exposure time 990 ms, gain 180, Gamma 100) are used in order to
obtain images that can be quantitatively compared and evaluated
with ImageJ software. Printing at different temperatures was
carried out on a metal plate placed on a isopropanol/dry ice
mixture (-80 ◦C), on a ice/salt mixture (-15 ◦C) or on paraffin oil
heated to 70 ◦C. The substrate was placed on the plate for several
min to make sure it has the same temperature as the plate. For
12 J. L. Wilbur, A. Kumar, E. Kim and G. M. Whitesides, Adv. Mater.,
1994, 6, 600–604.
13 L. Yan, W. T. S. Huck, X. M. Zhao and G. M. Whitesides, Langmuir,
1999, 15, 1208–1214.
14 T. P. Sullivan, M. L. van Poll, P. Y. W. Dankers and W. T. S. Huck,
Angew. Chem., Int. Ed., 2004, 43, 4190–4193.
15 D. I. Rozkiewicz, B. J. Ravoo and D. N. Reinhoudt, Langmuir, 2005,
21, 6337.
16 B. J. Ravoo, J. Mater. Chem., 2009, 19, 8902–8906.
17 D. I. Rozkiewicz, D. Jancewski, W. Verboom, B. J. Ravoo and D. N.
Reinhoudt, Angew. Chem., Int. Ed., 2006, 45, 5292.
18 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004–2021.
◦
temperatures below 0 C condensation of water was avoided by
placing the setup in dry argon atmosphere.
19 D. I. Rozkiewicz, J. Gierlich, G. A. Burley, K. Gutsmiedl, T. Carell, B.
J. Ravoo and D. N. Reinhoudt, ChemBioChem, 2007, 8, 1997–2002.
20 O. Michel and B. J. Ravoo, Langmuir, 2008, 24, 12116–12118.
21 K. Godula, D. Rabuka, K. Nam and C. R. Bertozzi, Angew. Chem.,
Int. Ed., 2009, 48, 4973–4976.
22 J. M. Spruell, B. A. Sheriff, D. I. Rozkiewicz, W. R. Dichtel, R. D.
Rohde, D. N. Reinhoudt, J. F. Stoddart and J. R. Heath, Angew. Chem.,
Int. Ed., 2008, 47, 9927–9932.
Retro-Diels–Alder reaction
After printing the inks on the SAMs according to the standard
procedure described above for 30 min and taking the fluorescence
images the samples are dipped into boiling ethanol. After 10, 30
and 60 min of treatment the samples are taken out, rinsed with
ethanol, dried and investigated with fluorescence microscopy.
23 C. Wendeln, A. Heile, H. F. Arlinghaus and B. J. Ravoo, Langmuir,
2010, 26, 4933–4940.
24 C. Wendeln, S. Rinnen, C. Schulz, H. F. Arlinghaus and B. J. Ravoo,
Langmuir, 2010, 26, 15966–15971.
Surface density determination
25 A. D. de Araujo, J. M. Palomo, J. Cramer, M. Kohn, H. Schroder, R.
Wacker, C. M. Niemeyer, K. Alexandrov and H. Waldmann, Angew.
Chem., Int. Ed., 2006, 45, 296–301.
26 P. Jonkheijm, D. Weinrich, M. Koehn, H. Engelkamp, P. C. M.
Christianen, J. Kuhlmann, J. C. Maan, D. Nuesse, H. Schroeder, R.
Wacker, R. Breinbauer, C. M. Niemeyer and H. Waldmann, Angew.
Chem., Int. Ed., 2008, 47, 4421–4424.
27 L. S. Wong, F. Khan and J. Micklefield, Chem. Rev., 2009, 109, 4025–
4053.
28 N. Gupta, B. F. Lin, L. Campos, M. D. Dimitriou, S. T. Hikita, N. D.
Treat, M. V. Tirrell, D. O. Clegg, E. J. Kramer and C. J. Hawker, Nat.
Chem., 2010, 2, 138–145.
Pentadiene ink 7 was printed on alkene SAM 9 (18 ¥ 18mm glass
slide) with a flat stamp bigger than the slide for 30 min. The
substrate was rinsed vigorously with ethanol and sonicated for 30 s.
The substrate is placed in approx. 15 mL boiling ethanol under
reflux for 2 h, then taken out and rinsed with a small amount of
ethanol which is added to the boiling ethanol. The exact volume
of this solution is determined and then the fluorescence intensity
at 585 nm (lmax of rhodamine lissamine B) is measured with a
fluorescence spectrometer and compared to a calibration curve
which is obtained from solutions with known concentrations of
lissamine rhodamine B.
29 R. Huisgen, Angew. Chem., 1963, 75, 742–754.
30 N. Balachander and C. N. Sukenik, Langmuir, 1990, 6, 1621–1627.
31 S. Semal, M. Voue’, M. J. de Ruijter, J. Dehuit and J. De Coninck, J.
Phys. Chem. B, 1999, 103, 4854–4861.
32 Y. Liu, L. K. Wolf and M. C. Messmer, Langmuir, 2001, 17, 4329–
Acknowledgement
4335.
33 S. Onclin, B. J. Ravoo and D. N. Reinhoudt, Angew. Chem., Int. Ed.,
2005, 44, 6282–6304.
The authors are grateful for financial support by the Deutsche
Forschungsgemeinschaft (IRTG 1143 Mu¨nster-Nagoya).
34 V. D. Kiselev and A. I. Konovalov, J. Phys. Org. Chem., 2009, 22,
466–483.
35 J. Sauer and R. Sustmann, Angew. Chem., Int. Ed. Engl., 1980, 19,
779–807.
References
1 R. J. Hamers, Annu. Rev. Anal. Chem., 2008, 1, 707–736.
2 A. Natan, L. Kronik, H. Haick and R. T. Tung, Adv. Mater., 2007, 19,
4103–4117.
36 C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010, 49,
1540–1573.
37 K. Griesbaum, Angew. Chem., 1970, 82, 276–287.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 4108–4115 | 4115
©