Journal of the American Chemical Society
COMMUNICATION
(c) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407–496.
(d) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632–2634.
(e) Rovis, T. Chem. Lett. 2008, 37, 2–7. For a review of the asymmetric
intramolecular Stetter reaction, see: (f) Read de Alaniz, J.; Rovis, T. Synlett
2009, 1189–1207. For a general review of Lewis base catalysis, see:
(g) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–
1638.
(3) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am. Chem.
Soc. 2009, 131, 10872–10874. For review of the effect of fluorine on mole-
cular conformation, see: Hunter, L. Beilstein J. Org. Chem. 2010, 6, No. 38.
(4) For other contributions to the asymmetric intermolecular Stetter
reaction, see: (a) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008,
130, 14066–14067. (b) Liu, Q.; Rovis, T. Org. Lett. 2009, 11, 2856–
2859. (c) Enders, D.; Han, J.; Henseler, A. Chem. Commun. 2008,
3989–3991. (d) Enders, D.; Han, J. Synthesis 2008, 3864–3868. (e)
Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50,
1410–1414. For an enzyme-catalyzed asymmetric Stetter reaction, see:
(f) Dresen, C.; Richter, M.; Pohl, M.; L€udeke, S.; M€uller, M. Angew.
Chem., Int. Ed. 2010, 49, 6600–6603.
(5) Evidence suggests that the role of the heteroatom is not simply
that of a proximal Lewis base, given that both pyridazine carboxaldehyde
and furfural participate with equal facility in spite of their very low
basicities (see ref 3).
(6) As an estimate of N lone pair versus CÀH size, witness the following
A values: CH3 = 1.74, NH2 = 1.40 (see: Smith, M. B.; March, J. March’s
Advanced Organic Chemistry, 5th ed.; Wiley: New York, 2001; p 174).
(7) (a) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005,
127, 16406–16407. (b) Chan, A.; Scheidt, K. A. Org. Lett. 2005,
7, 905–908. (c) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873–3876.
(8) Filloux, C. M.; Lathrop, S. P.; Rovis, T. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 20666–20671.
(9) (a) Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
8126–8127. (b) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am.
Chem. Soc. 2004, 126, 9518–9519.
(10) A 1,2-proton shift is a symmetry-forbidden transformation
(see: Kemp, D. S. J. Org. Chem. 1971, 36, 202–204 and references
therein). However, it has been calculated to have barriers of ∼29 kcal/
mol for thiazolylidine and ∼51 kcal/mol for cyanide in the formation
of the acyl anion equivalent from formaldehyde. See: Goldfuss, B.;
Schumacher, M. J. Mol. Model. 2006, 12, 591–595.
(11) The use of nitrocyclohexene results in the unusual formation of
cinnamaldehyde dimethylacetal. For a similar observation in the Stetter
reaction, see: Parfenov, E. A.; Bekker, A. R.; Kosterova, G. F. Zh. Org.
Khim. 1981, 17, 885–886.
(12) Moore, J. L.; Silvestri, A. P.; Read de Alaniz, J.; DiRocco, D. A.;
Rovis, T. Org. Lett. 2011, 13, 1742–1745.
(13) The role of a solvent isotope effect in this reaction cannot be
discounted. However, an experimental value of an isotope effect of 3.6
for the hydration of acetaldehyde has been explained by the intervention
of three molecules of water in the addition step, ultimately involving the
cleavage of OÀH (OÀD) bonds. A theoretical investigation of the
hydration of formaldehyde supports this assertion; to wit, the isotope
effect is due not to solvent but to a specific isotope effect (see: Wolfe, S.;
Kim, C.-K.; Yang, K.; Weinberg, N.; Shi, Z. J. Am. Chem. Soc. 1995,
117, 4240–4260 and references therein). It is also noteworthy that the
entropically disfavored intervention of three water molecules in this
reaction is preferred because of the preference for the eight-membered
ring for the proton tranfer events, with the larger OÀHÀO bond angles
it facilitates. We further note that the catecholate also forms an eight-
membered ring in our proposed model for shuttling of the proton from
C to O.
10405
dx.doi.org/10.1021/ja203810b |J. Am. Chem. Soc. 2011, 133, 10402–10405