was used generating 150 fs pulses at a 76 MHz rate. The
excitation was focused into the cuvette through a microscope
objective (10ꢁ, NA 0.25). The fluorescence was detected in
epifluorescence mode via a dichroic mirror (Chroma 675dcxru)
and a barrier filter (Chroma e650sp-2p) by a compact CCD
spectrometer module BWTek BTC112E. Total fluorescence
intensities were obtained by integrating the corrected emission
spectra measured by this spectrometer. TPA cross-sections
(s2) were determined from the two-photon excited fluorescence
(TPEF) cross-sections (s2Ff) and the fluorescence emission
quantum yield (Ff). TPEF cross-sections were measured relative
to fluorescein in 0.01 M aqueous NaOH for 715–980 nm,65,74
and the appropriate solvent-related refractive index corrections.75
Data points between 700 and 715 nm were corrected according
to ref. 76. The quadratic dependence of the fluorescence
intensity on the excitation power was checked for each sample
and all wavelengths, indicating that the measurements were
carried out in intensity regimes where saturation or photo-
degradation did not occur.
12 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248,
73–76.
13 C. Xu, W. Zipfel, J. B. Shear, R. M. Williams and W. W. Webb,
Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 10763–10768.
14 J. D. Bhawalkar, N. D. Kumar, C. F. Zhao and P. N. Prasad,
J. Clin. Laser Med. Surg., 1997, 15, 201–204.
15 S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey and
P. N. Prasad, J. Am. Chem. Soc., 2007, 129, 2669–2675.
16 H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai,
E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev,
X. D. YangVictor, D. Phillips, A. Rebane, B. C. Wilson and
H. L. Anderson, Nat. Photonics, 2008, 2, 420.
17 J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong,
A. Elliott, K. McInnerney and C. W. Spangler, Clin. Cancer Res.,
2008, 14, 6564–6573.
18 H. M. Kim and B. R. Cho, Acc. Chem. Res., 2009, 42,
863–872.
19 H. M. Kim and B. R. Cho, Chem.–Asian J., 2011, 6, 58–69.
20 S. Sumalekshmy and C. J. Fahrni, Chem. Mater., 2010, 23,
483–500.
21 P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181–3209, and references
cited therein.
22 M. Drobizhev, A. Karotki, M. Kruk and A. Rebane, Chem. Phys.
Lett., 2002, 355, 175–182.
23 H. Rath, J. Sankar, V. PrabhuRaja, T. K. Chandrashekar, A. Nag
and D. Goswami, J. Am. Chem. Soc., 2005, 127, 11608–11609.
24 R. Misra, R. Kumar, T. K. Chandrashekar, A. Nag and
D. Goswami, Org. Lett., 2006, 8, 629–631.
25 K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada and K. Ohta,
J. Am. Chem. Soc., 2003, 125, 13356–13357.
26 D. Y. Kim, T. K. Ahn, J. H. Kwon, D. Kim, T. Ikeue, N. Aratani,
A. Osuka, M. Shigeiwa and S. Maeda, J. Phys. Chem. A, 2005, 109,
2996–2999.
27 T. K. Ahn, K. S. Kim, D. Y. Kim, S. B. Noh, N. Aratani, C. Ikeda,
A. Osuka and D. Kim, J. Am. Chem. Soc., 2006, 128, 1700–1704.
28 K. Ogawa, H. Hasegawa, Y. Inaba, Y. Kobuke, H. Inouye,
Y. Kanemitsu, E. Kohno, T. Hirano, S.-i. Ogura and I. Okura,
J. Med. Chem., 2006, 49, 2276–2283.
29 L. Ventelon, L. Moreaux, J. Mertz and M. Blanchard-Desce,
Chem. Commun., 1999, 2055–2056.
30 L. Ventelon, S. Charier, L. Moreaux, J. Mertz and M. Blanchard-
Desce, Angew. Chem., Int. Ed., 2001, 40, 2098–2101.
31 O. Mongin, L. Porres, L. Moreaux, J. Mertz and M. Blanchard-
Desce, Org. Lett., 2002, 4, 719–722.
32 M. G. Silly, L. Porres, O. Mongin, P.-A. Chollet and
M. Blanchard-Desce, Chem. Phys. Lett., 2003, 379, 74–80.
33 M. H. V. Werts, S. Gmouh, O. Mongin, T. Pons and
M. Blanchard-Desce, J. Am. Chem. Soc., 2004, 126, 16294–16295.
34 M. Charlot, N. Izard, O. Mongin, D. Riehl and M. Blanchard-
Desce, Chem. Phys. Lett., 2006, 417, 297–302.
Measurements of singlet oxygen quantum yield (UD)
The excitation source consisted of a Xe-arc, the light was
separated in a SPEX 1680, 0.22 mm double monochromator.
The detection at 1270 nm was done through a PTI S/N 1565
monochromator, and the emission was monitored by a
liquid nitrogen-cooled Ge-detector model (EO-817L, North
Coast Scientific Co). Singlet oxygen quantum yields FD were
determined using tetraphenylporphyrin (TPP) as reference
solution (FD [TPP] = 0.55 in CHCl377; FD [TPP] = 0.68 in
toluene)44 and were estimated from 1O2 luminescence at 1272 nm.
The optical density of the reference and the sample solution
(at 405 nm) were set equal to 0.2.
Acknowledgements
Financial support by ANR PNANO 07-102 is gratefully
acknowledged. We thank Region Bretagne for a fellowship
to CR. Part of the work was supported by GDR Photomed.
35 O. Mongin, L. Porres, M. Charlot, C. Katan and M. Blanchard-
Desce, Chem.–Eur. J., 2007, 13, 1481–1498.
36 M. Blanchard-Desce, C. R. Phys., 2002, 3, 439–448.
37 O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade,
J.-P. Majoral and M. Blanchard-Desce, Chem. Commun., 2006,
915–917.
38 T. R. Krishna, M. Parent, M. H. V. Werts, L. Moreaux,
S. Gmouh, S. Charpak, A.-M. Caminade, J.-P. Majoral and
M. Blanchard-Desce, Angew. Chem., Int. Ed., 2006, 45, 4645–4648.
39 O. Mongin, A. Pla-Quintana, F. Terenziani, D. Drouin, C. Le
Droumaguet, A.-M. Caminade, J.-P. Majoral and M. Blanchard-
Desce, New J. Chem., 2007, 31, 1354–1367.
References and notes
1 G. S. He, L.-S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev., 2008,
108, 1245–1330.
2 F. Terenziani, C. Katan, E. Badaeva, S. Tretiak and
M. Blanchard-Desce, Adv. Mater., 2008, 20, 4641–4678.
3 M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson,
Angew. Chem., Int. Ed., 2009, 48, 3244–3266.
4 H. M. Kim and B. R. Cho, Chem. Commun., 2009, 153–164.
5 S. Maruo, O. Nakamura and S. Kawata, Opt. Lett., 1997, 22,
132–134.
40 P. K. Frederiksen, M. Jørgensen and P. R. Ogilby, J. Am. Chem.
Soc., 2001, 123, 1215–1221.
41 S. P. McIlroy, E. Clo, L. Nikolajsen, P. K. Frederiksen,
C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf and P. R. Ogilby,
J. Org. Chem., 2005, 70, 1134–1146.
42 C. B. Nielsen, M. Johnsen, J. Arnbjerg, M. Pittelkow,
S. P. McIlroy, P. R. Ogilby and M. Jorgensen, J. Org. Chem.,
2005, 70, 7065–7079.
6 B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer,
J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler,
I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi,
X. L. Wu, S. R. Marder and J. W. Perry, Nature, 1999, 398, 51–54.
7 S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature, 2001,
412, 697–698.
8 D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245,
843–845.
43 R. Shukla, T. P. Thomas, J. Peters, A. Kotlyar, A. Myc and
J. J. R. Baker, Chem. Commun., 2005, 5739–5741.
44 M. Boisbrun, R. Vanderesse, P. Engrand, A. Olie, S. Hupont,
J.-B. Regnouf-de-Vains and C. Frochot, Tetrahedron, 2008, 64,
3494–3504.
9 J. H. Strickler and W. W. Webb, Opt. Lett., 1991, 16, 1780–1782.
10 G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt,
R. McKellar and A. G. Dillard, Opt. Lett., 1995, 20, 435–437.
11 J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Rockel,
S. R. Marder and J. W. Perry, Opt. Lett., 1997, 22, 1843–1845.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 1771–1780 1779