Ring Size-Selective Ring-Closing Olefin Metathesis
References
Suzuki, Tetrahedron 2002, 58, 6651–6654; c) T. Kita-
mura, Y. Kuzuba, Y. Sato, H. Wakamatsu, R. Fujita, M.
Mori, Tetrahedron 2004, 60, 7375–7389; d) B. Schmidt,
S. Nave, Adv. Synth. Catal. 2007, 349, 215–230.
[1] For a comprehensive review, see: a) Handbook of
Metathesis, (Ed.: R. H. Grubbs), Wiley-VCH, Wein-
heim, 2003. For reviews, see: b) T. Gaich, J. Mulzer,
Current Topics in Medicinal Chemistry 2005, 5, 1473–
1494; c) A. H. Hoveyda, A. R. Zhugralin, Nature 2007,
450, 243–251; d) C. Samojlowicz, M. Bieniek, K. Grela,
Chem. Rev. 2009, 109, 3708–3742; e) C. E. Diesen-
druck, E. Tzur, N. G. Lemcoff, Eur. J. Inorg. Chem.
2009, 4185–4203; f) G. C. Vougioukalakis, R. H.
Grubbs, Chem. Rev. 2010, 110, 1746–1787; g) K.-i.
Takao, K.-i. Tadano, Heterocycles 2010, 81, 1603–1629;
h) M. Tori, R. Mizutani, Molecules 2010, 15, 4242–
4260.
[2] For a review, see: S. P. Nolan, H. Clavier, Chem. Soc.
Rev. 2010, 39, 3305–3316.
[3] For examples, see: a) S. Michaelis, S. Blechert, Org.
Lett. 2005, 7, 5513–5516; b) B. Schmidt, S. Nave,
Chem. Commun. 2006, 2489–2491.
[4] a) K. Yoshida, T. Imamoto, J. Am. Chem. Soc. 2005,
127, 10470–10471; b) K. Yoshida, H. Takahashi, T. Im-
amoto, Chem. Eur. J. 2008, 14, 8246–8261; c) H. Taka-
hashi, K. Yoshida, A. Yanagisawa, J. Org. Chem. 2009,
74, 3632–3640.
[5] The isomer 2 was accidentally formed by isomerization
during the preparation of 1.
[6] a) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org.
Lett. 1999, 1, 953–956; b) T. M. Trnka, J. P. Morgan,
M. S. Sanford, T. E. Wilhelm, M. Scholl, T.-L. Choi, S.
Ding, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc.
2003, 125, 2546–2558.
[7] Ethylene gas was employed to accelerate the RCEM
step, see: a) M. Mori, N. Sakakibara, A. Kinoshita, J.
Org. Chem. 1998, 63, 6082–6083; b) G. C. Lloyd-Jones,
R. G. Margue, J. G. de Vries, Angew. Chem. 2005, 117,
7608–7613; Angew. Chem. Int. Ed. 2005, 44, 7442–
7447. For recent examples of the RCEM conducted
under ethylene gas, see: c) B. G. Kim, M. L. Snapper, J.
Am. Chem. Soc. 2006, 128, 52–53; d) K. P. Kaliappan,
V. Ravikumar, J. Org. Chem. 2007, 72, 6116–6126;
e) Q. Yang, Y.-Y. Lai, W.-J. Xiao, H. Alper, Tetrahe-
dron Lett. 2008, 49, 7334–7336.
[10] H.-Y. Cheng, C.-S. Sun, D.-R. Hou, J. Org. Chem. 2007,
72, 2674–2677.
[11] For reports of hindrance of the progress of RCM by
ethylene, see: a) K. P. Kaliappan, R. S. Nandurdikar,
M. M. Shaikh, Tetrahedron 2006, 62, 5064–5073; b) E.
Groaz, D. Banti, M. North, Tetrahedron 2008, 64, 204–
218; c) Y.-J. Lee, R. R. Schrock, A. H. Hoveyda, J. Am.
Chem. Soc. 2009, 131, 10652–10661.
[12] For reports on ethylene-induced catalyst decomposi-
tion, see: a) W. J. van Rensburg, P. J. Steynberg, W. H.
Meyer, M. M. Kirk, G. S. Forman, J. Am. Chem. Soc.
2004, 126, 14332–14333; b) K. A. Burdett, L. D. Harris,
P. Margl, B. R. Maughon, T. Mokhtar-Zadeh, P. C. Sau-
cier, E. P. Wasserman, Organometallics 2004, 23, 2027–
2047; c) Z. Lysenko, B. R. Maughon, T. Mokhtar-
Zadeh, M. L. Tulchinsky, J. Organomet. Chem. 2006,
691, 5197–5203.
[13] The results of Graphs 2 and 3 (Scheme 2) agree with
the ring-size selectivity between 6- and 7-membered
ring formations as was observed in Scheme 1.
[14] When 8c was treated with 3 (1 mol%) in toluene
(0.01M) under ethylene gas (1 atm) at 40 or 808C for
2 h, complete recovery of 8c was observed. The result
indicates the irreversibility of the RCM of 7c. For a
review of the equilibrium of RCM, see: S. Monfette,
D. E. Fogg, Chem. Rev. 2009, 109, 3783–3816.
[15] For a report on the solubility of ethylene in toluene,
see: L.-s. Lee, H.-j. Ou, H.-l. Hsu, Fluid Phase Equilib.
2005, 231, 221–230.
[16] It is thought that cyclohexene 11 is directly formed
from 9 by RCM. However, the rearrangement of cyclo-
pentene 10 should be considered as another possible
pathway for the formation of 11. In fact, the reaction
of 10 with 5 mol% of catalyst 3 under ethylene gas
(3 atm) at 608C for 2 h gave 11 in 94% yield (10 was
recovered in 6% yield). Whereas the actual pathway
for the formation of 11 is not clear, conducting the re-
action under ethylene gas leads to the formation of 11
predominantly in any event. For related reports on sim-
ilar rearrangements, see: a) D. R. Cefalo, A. F. Kiely,
M. Wuchrer, J. Y. Jamieson, R. R. Schrock, A. H. Hov-
eyda, J. Am. Chem. Soc. 2001, 123, 3139–3140; b) X.
Teng, D. R. Cefalo, R. R. Schrock, A. H. Hoveyda, J.
Am. Chem. Soc. 2002, 124, 10779–10784.
[8] The reaction of a mixture of the carbonyl analogues of
1 and 2 giving phenol-type products thorough tautome-
rization gave a similar result with that of Scheme 1.
The carbonyl analogues were prepared by Dess–Martin
oxidation of a mixture of 1 and 2.
[9] Examination of literature data informed us that similar
occurrences with ethylene gas seemed to be observed
rarely. For examples, see: a) O. Arjona, A. G. Csꢂkꢃ, R.
Medel, J. Plumet, J. Org. Chem. 2002, 67, 1380–1383;
b) H. Hagiwara, T. Katsumi, S. Endou, T. Hoshi, T.
[17] There is a possibility that the oligomers were effective-
ly recycled into the thermodynamic product 11 under
the conditions using ethylene gas.
[18] W. Liu, P. J. Nichols, N. Smith, Tetrahedron Lett. 2009,
50, 6103–6105.
Adv. Synth. Catal. 2011, 353, 1229 – 1233
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1233