Advanced Materials Project 2), with support from Advantage West
Midlands (AWM) and partial funding by the European Regional
Development Fund (ERDF). CP thanks the Universita` degli Studi
di Camerino, Italy, for funding.
References
1 D. J. Darensbourg, M. W. Holtcamp, B. Khandelwal and J. H.
Reibenspies, Inorg. Chem., 1995, 34, 5390.
2 G. A. Bowmaker, N. Chaichit, C. Pakawatchai, B. W. Skelton and A.
H. White, Dalton Trans., 2008, 2926; G. A. Bowmaker, N. Chaichit, C.
Pakawatchai, B. W. Skelton and A. H. White, Can. J. Chem., 2009, 87,
161; G. A. Bowmaker, B. W. Skelton and A. H. White, Inorg. Chem.,
2009, 48, 3185; G. A. Bowmaker, C. Pakawatchai, S. Saithong, B. W.
Skelton and A. H. White, Dalton Trans., 2009, 2588; G. A. Bowmaker,
C. Pakawatchai, S. Saithong, B. W. Skelton and A. H. White, Dalton
Trans., 2010, 39, 4391; G. A. Bowmaker, J. V. Hanna, B. W. Skelton
and A. H. White, Chem. Commun., 2009, 2168; G. A. Bowmaker, J. V.
Hanna, B. W. Skelton and A. H. White, Dalton Trans., 2009, 5447; G.
A. Bowmaker, C. Di Nicola, C. Pettinari, B. W. Skelton, N. Somers and
A. H. White, Dalton Trans., 2011, 40, 5102.
Fig.
9
Expansion of the 31P CP MAS NMR spectrum of
3 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008,
64, 112.
[(Ph3P)2Ag(O2COH)] and stick diagram of the spectrum simulated as the
107
AB part of an ABX system with dA = 6.14, dB = 7.19, JAX = 442 Hz,
4 P. G. Jones, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,
1993, 49, 1148. An unsolvated mononuclear form of the nitrate,
109
107
109
JAX = 508 Hz, JBX = 437 Hz, JBX = 502 Hz, JAB = 147 Hz.
¯
[(Ph3P)2Ag(O2NO)] is also known (Triclinic, P1, a = 11.821(3), b ◦=
arising from coupling to 63Cu, due to the slightly larger magnetic
moment of the former. The peaks due to J(63Cu, 31P) are more
˚
11.990(3), c = 13.660(3) A, a = 102.05(2), b = 112.80(2), g = 105.30(2) ,
1
3
˚
V = 1612.8(7) A (T ca. 295 K)); P. F. Barron, J. C. Dyason, P. C. Healy,
L. M. Engelhardt, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton
Trans., 1986, 1965.
than double the intensity of those arising from 1J(65Cu, 31P), due
to the different natural abundances of the copper isotopes (69.1
and 30.9%, respectively). The spacings between the quartet peaks
increase from high to low frequency due to the presence of residual
dipolar coupling (i.e. from incomplete MAS averaging) between
the (I = 1/2) 31P and the quadrupolar (I = 3/2) 63,65Cu nuclei.14,17–21
These features are evident in the spectrum of [(Ph3P)2Cu(HCO3)]
(see Fig. 8(d)). If the structure of this complex is the same as
that of the previously published O-bridged dimer [(Ph3P)2Cu(m-
O.CO.OH)2Cu(PPh3)2]1 then the two P atoms bound to each Cu
atom should be inequivalent. However, no evidence of 2J(31P,
31P) coupling is observed in this data and hence there is no
suggestion of any inequivalence between these P positions. The
NMR parameters, derived from a first order analysis of the
spectrum,20 for a single P site in the complex are given in Table 3. In
this respect, the implied result for this particular copper complex
is similar to that for [(Ph3P)2Ag(m-O.CO.OH)2Ag(PPh3)2].
5 T. Friscic and W. Jones, Cryst. Growth Des., 2009, 9, 1621; T. Friscic,
A. V. Trask, W. Jones and W. D. S. Motherwell, Angew. Chem., Int. Ed.,
2006, 45, 7546; T. Friscic and L. Fabian, CrystEngComm, 2009, 11, 743;
E. H. H. Chow, F. C. Strobridge and T. Friscic, Chem. Commun., 2010,
46, 6368; F. C. Strobridge, N. Judas and T. Friscic, CrystEngComm,
2010, 12, 2409; V. Strukil, L. Fabian, D. G. Reid, M. J. Duer, G. J.
Jackson, M. Eckert-Maksic and T. Friscic, Chem. Commun., 2010, 46,
9191; C. J. Adams, H. M. Colquhoun, P. C. Crawford, M. Lusi and
A. G. Orpen, Angew. Chem., Int. Ed., 2007, 46, 1124; D. Braga, S. L.
Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi and M. Polito,
Dalton Trans., 2006, 1249; D. Braga, M. Curzi, A. Johansson, M. Polito,
K. Rubini and F. Grepioni, Angew. Chem. Int. Ed., 2006, 45, 142; D.
Braga, S. L. Giaffreda, F. Grepioni and M. Polito, CrystEngComm,
2004, 6, 458; A. N. Swinburne and J. W. Steed, CrystEngComm, 2009,
11, 433; L.-F. Yang, M.-L. Cao, Y. Cui, J.-J. Wu and B.-H. Ye, Crystal
Growth Des., 2010, 10, 1263.
6 G. A. Bowmaker, Effendy, R. D. Hart, J. D. Kildea, E. N. de Silva, B.
W. Skelton and A. H. White, Aust. J. Chem., 1997, 50, 539.
7 B. M. Gatehouse, S. E. Livingstone and R. S. Nyholm, J. Chem. Soc.,
1958, 3137.
8 T. L. Slager, B. J. Lindgren, A. J. Mallmann and R. G. Greenler, J. Phys.
Chem., 1972, 76, 940.
9 A. M. Greenaway, T. P. Dasgupta, K. C. Koshy and G. G. Sadler,
Spectrochim. Acta, Part A, 1986, 42, 949.
Conclusion
Solution and mechanochemical methods involving incorporation
of gaseous reactants have been used in the study of triphenylphos-
phine complexes of silver(I) carbonate and bicarbonate. In the
case of the mechanochemical syntheses, this demonstrates an
additional aspect of this type of synthesis, which potentially
increases its versatility. The study further demonstrates the value
of ATR IR and CPMAS NMR spectroscopy for monitoring the
progress of mechanochemical syntheses.
10 P. C. Healy and A. H. White, Spectrochim. Acta, Part A, 1973, 29, 1191.
11 D. L. Bernitt, K. O. Hartman and I. C. Hisatsune, J. Chem. Phys., 1965,
42, 3553.
12 J. A. Allen and P. H. Scaife, Aust. J. Chem., 1966, 19, 715.
13 M. Jansen and S. Vensky, Z. Naturforsch., Teil B, 2000, 55, 882.
14 G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, J. C. Reid, C. E. F.
Rickard and A. H. White, J. Chem. Soc., Dalton Trans., 2000, 753.
15 G. A. Bowmaker, J. V. Hanna, C. E. F. Rickard and A. S. Lipton, J.
Chem. Soc., Dalton Trans., 2001, 20.
16 R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Longman,
London, 1986, pp. 54–57.
17 A. C. Olivieri, J. Am. Chem. Soc., 1992, 114, 5758.
18 R. K. Harris and A. C. Olivieri, Prog. Nucl. Magn. Reson. Spectrosc.,
1992, 24, 435.
19 J. V. Hanna, M. E. Smith, S. N. Stuart and P. C. Healy, J. Phys. Chem.,
1992, 96, 7560.
20 J. V. Hanna, S. E. Boyd, P. C. Healy, G. A. Bowmaker, B. W. Skelton
and A. H. White, Dalton Trans., 2005, 2547.
21 B. E. G. Lucier, J. A. Tang, R. W. Schurko, G. A. Bowmaker, P. C. Healy
and J. V. Hanna, J. Phys. Chem. C, 2010, 114, 7949.
Acknowledgements
JVH thanks EPSRC and the University of Warwick for partial
funding of the solid state NMR infrastructure at Warwick, and
acknowledges additional support for this infrastructure obtained
through Birmingham Science City: Innovative Uses for Advanced
Materials in the Modern World (West Midlands Centre for
7218 | Dalton Trans., 2011, 40, 7210–7218
This journal is
The Royal Society of Chemistry 2011
©