Molecules 2017, 22, 576
7 of 9
Acknowledgments: This work was supported by Grants from the Key Laboratory of Xinjiang Uyghur
Autonomous Region (2015KL014), NSFC (21572195, 21502162, and 21262035), and Xinjiang University students
innovative training program (201510755012).
Author Contributions: Chenjiang Liu conceived the idea of this piece of research; Zhiqing Liu, Ya Zhou and
Chenjiang Liu designed the experiments; Ya Zhou, Zhiqing Liu and Tingting Yuan performed the chemical
experiments; Ya Zhou and Zhiqing Liu performed the spectra analyses; Ya Zhou, Zhiqing Liu, Jianbin Huang and
Chenjiang Liu wrote the paper.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
2.
3.
4.
5.
6.
Kablaoui, N.; Patel, S.; Shao, J.; Demian, D.; Hoffmaster, K.; Berlioz, F.; Vazquez, M.L.; Moore, W.M.;
Nugent, R.A. Novel benzoxazole inhibitors of mPGES-1. Bioorg. Med. Chem. Lett. 2013, 23, 907–911.
Liu, K.G.; Lo, J.R.; Comery, T.A.; Zhang, G.M.; Zhang, J.Y.; Kowal, D.M.; Smith, D.L.; Di, L.; Kerns, E.H.;
Schechter, L.E.; et al. Identification of a series of benzoxazoles as potent 5-HT6 ligands. Bioorg. Med.
Ningaiah, S.; Bhadraiah, U.K.; Keshavamurthy, S.; Javarasetty, C. Novel pyrazoline amidoxime and their
1,2,4-oxadiazole analogues: Synthesis and pharmacological screening. Bioorg. Med. Chem. Lett. 2013, 23,
Gao, M.Z.; Wang, M.; Hutchins, G.D.; Zheng, Q.H. Synthesis of new carbon-11 labeled benzoxazole
derivatives for PET imaging of 5-HT3 receptor. Eur. J. Med. Chem. 2008, 43, 1570–1574. [CrossRef]
Yoshida, S.; Shiokawa, S.; Kawano, K.I.; Ito, T.; Murakami, H.; Suzuki, H.; Sato, Y. Orally Active Benzoxazole
Derivative as 5-HT3 Receptor Partial Agonist for Treatment of Diarrhea-Predominant Irritable Bowel
O’Donnell, C.J.; Rogers, B.N.; Bronk, B.S.; Bryce, D.K.; Coe, J.W.; Cook, K.K.; Duplantier, A.J.; Evrard, E.;
Hajós, M.; Hoffmann, W.E.; et al. Discovery of 4-(5-Methyloxazolo[4,5-b]pyridin-2-yl)-1,4-diazabicyclo
[3.2.2]nonane (CP-810,123), a Novel
α7 Nicotinic Acetylcholine Receptor Agonist for the Treatment of
Cognitive Disorders in Schizophrenia: Synthesis, SAR Development, and in Vivo Efficacy in Cognition
Models. J. Med. Chem. 2010, 53, 1222–1237. [PubMed]
7.
Cox, C.D.; Breslin, M.J.; Whitman, D.B.; Schreier, J.D.; McGaughey, G.B.; Bogusky, M.J.;
Roecker, A.J.; Mercer, S.P.; Bednar, R.A.; Lemaire, W.; et al.
Discovery of the Dual Orexin
Receptor Antagonist [(7R)-4-(5-Chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl] [5-methyl-2-(2H
-1,2,3-triazol-2-yl)phenyl] methanone (MK-4305) for the Treatment of Insomnia. J. Med. Chem. 2010, 53,
8.
9.
Cho, S.H.; Kim, J.Y.; Lee, S.Y.; Chang, S. Silver-Mediated Direct Amination of Benzoxazoles: Tuning the
Amino Group Source from Formamides to Parent Amines. Angew. Chem. Int. Ed. 2009, 48, 9127–9130.
Kim, J.Y.; Cho, S.H.; Joseph, J.; Chang, S. Cobalt- and Manganese-Catalyzed Direct Amination of Azoles
under Mild Reaction Conditions and the Mechanistic Details. Angew. Chem. Int. Ed. 2010, 122, 10095–10099.
10. Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Direct Amination of Azoles via Catalytic C–H, N–H
11. Wang, Q.; Schreiber, S.L. Copper-Mediated Amidation of Heterocyclic and Aromatic C–H Bonds. Org. Lett.
12. Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Copper-Catalyzed Direct
Sulfoximination of Azoles and Polyfluoroarenes under Ambient Conditions. Org. Lett. 2011, 13, 359–361.
13. Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. A New Entry of Amination Reagents for Heteroaromatic C-H
Bonds: Copper-Catalyzed Direct Amination of Azoles with Chloroamines at Room Temperature. J. Am.
14. Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper-Catalyzed Direct Amination of Electron-Deficient
Arenes with Hydroxylamines. Org. Lett. 2011, 13, 2860–2863. [CrossRef] [PubMed]