ACS Medicinal Chemistry Letters
LETTER
synthetically complex, simplified derivatives provide a method
that enables rapid elucidation of SAR and provide a potential tool
by which the biological target may be discovered through
subsequent studies. Further investigation into the SAR and
mechanism of action for monoenomycin is ongoing and will be
reported in due course.
(13) Mitsunobu, O.; Yamada, M. Preparation of esters of carboxylic
and phosphoric acid via quaternary phosphonium salts. Bull. Chem. Soc.
Jpn. 1967, 40, 2380–2382.
(14) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-based hetero-
cyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010,
110, 1746–1787.
(15) Herlt, A. J.; Kibby, J. J.; Rickards, R. W. Synthesis of unlabelled
and carboxyl-labelled 3-Amino-5-hydroxybenzoic acid. Aust. J. Chem.
1981, 34, 1319–1324.
’ ASSOCIATED CONTENT
(16) Ziegler, K.; Martin, H.; Krupp, F. Metallorganische verbindun-
gen, XXVII aluminiumtrialkyle und dialkyl-aluminiumhydride aus alumi-
niumisobutyl-verbindungen. Justus Liebigs Ann. Chem. 1960, 629, 14–19.
(17) Wadsworth, W. S., Jr.; Emmons, W. D. The utility of phospho-
natecarbanions inolefin synthesis. J. Am. Chem. Soc. 1961, 83, 1733–1738.
(18) Adam, W.; Eggelte, J. Cyclic peroxides. 57. Prostanoid endo-
peroxide model compounds: 2,3-Dioxabicyclo[2.2.1]heptane via selec-
tive diimide reduction. J. Org. Chem. 1977, 42, 3987–3988.
(19) El-Faham, A.; Funosas, R. S.; Prohens, R.; Albericio, F. COMU:
A safer and more effective replacement for benzotriazole-based uronium
coupling reagents. Chem.—Eur. J. 2009, 15, 9404–9416.
S
Supporting Information. Full experimental procedures
b
and characterization for all compounds. This material is available
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: bblagg@ku.edu.
(20) Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. Chiral
synthesis via organoboranes. 6. Asymmetric allylboration via chiral
allyldialkylboranes. Synthesis of homoallylic alcohols with exceptionally
high enantiomeric excess. J. Org. Chem. 1986, 51, 432–439.
Funding Sources
We acknowledge NIH/NCI for financial support, CA109265.
G.E.L.B. acknowledges the Madison and Lila Self Graduate
Fellowship and the American Foundation for Pharmaceutical
Education for financial support and Dr. Geraldine Calvet for
preliminary studies.
’ REFERENCES
(1) Lalloo, U. G.; Ambarram, A. New antituberculous drugs in
development. Curr. HIV/AIDS Rep. 2010, 7, 143–151.
(2) Brandt, G. E. L.; Blagg, B. S. J. Alternate strategies of Hsp90
modulation for the treatment of cancer and other diseases. Curr. Top.
Med. Chem. 2009, 9, 1447–1461.
(3) Funayama, S.; Anraku, Y.; Mita, A.; Yang, Z.-B.; Shibata, K.;
Komiyama, K.; Umezawa, I.; Omura, S. Structure-activity relationship of
a novel antitumor ansamycin antibiotic trienomycin A and related com-
pounds. J. Antibiot. 1988, 41, 1223–1230.
(4) Grunicke, H.; Pushendorf, B.; Werchau, H. Mechanism of action
of distamycin A and other antibiotics with antiviral activity. Rev. Physiol.
Biochem. Pharmacol. 1976, 75, 69–96.
(5) Funayama, S.; Okada, K.; Komiyama, K.; Umezawa, I. Structure
of trienomycin A, a novel cytocidal ansamycin antibiotic. J. Antibiot.
1985, 38, 1107–1109.
(6) Masse, C. E.; Yang, M.; Solomon, J.; Panek, J. S. Total Synthesis of
(+)-mycotrienol and (+)-mycotrienin I: Application of asymmetric
crotylsilane bond constructions. J. Am. Chem. Soc. 1998, 120, 4123–4134.
(7) Funayama, S.; Okada, K.; Iwasaki, K.; Komiyama, K.; Umezawa,
I. Structures of trienomycins A, B and C, novel cytocidal ansamycin
antibiotics. J. Antibiot. 1985, 38, 1677–1683.
(8) Komiyama, K.; Hirokawa, Y.; Yamaguchi, K.; Funayama, S.;
Masuda, K.; Anraku, Y.; Umezawa, I.; Omura, S. Antitumor activity of
trienomycin A on murine tumors. J. Antibiot. 1987, 40, 1768–1772.
(9) Umezawa, I.; Funayama, S.; Okada, K.; Iwasaki, K.; Satoh, J.;
Masuda, K.; Komiyama, K. Studies on a novel cytocidal antibiotic,
trienomycin A taxonomy, fermentation, isolation, and physico-chemical
and biological characteristics. J. Antibiot. 1985, 38, 699–705.
(10) Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. Total
syntheses of (+)-trienomycins A and F via a unified strategy. J. Am.
Chem. Soc. 1996, 118, 8316–8328.
(11) Jain, A. N. Ligand-based structural hypotheses for virtual
screening. J. Med. Chem. 2004, 47, 947–961.
(12) Maryanoff, B. E.; Reitz, A. B. The Wittig olefination reaction
and modifications involving phosphoryl-stabilized carbanions. Stereo-
chemistry, mechanism, and selected synthetic aspects. Chem. Rev. 1989,
89, 863–927.
740
dx.doi.org/10.1021/ml200108y |ACS Med. Chem. Lett. 2011, 2, 735–740