10.1002/adsc.201701347
Advanced Synthesis & Catalysis
Experimental Section
Collect. Czech. Chem. Commun. 2002, 67, 1719-
1728; c) F. Bonardi, E. Halza, M. Walko, F. Du
Plessis, N. Nouwen, B. L. Feringa, A. J. Driessen,
Proc. Natl. Acad. Sci. USA. 2011, 108, 7775-7780;
d) J. Dong, Y. Liu, Y. Cui, Chem. Commun. 2014,
50, 14949-14952; e) K.-Y. Liao, C.-W. Hsu, Y.
Chi, M.-K. Hsu, S.-W. Wu, C.-H. Chang, S.-H. Liu,
G.-H. Lee, P.-T. Chou, Y. Hu, Inorg. Chem. 2015,
54, 4029-4038; f) J. Lu, J. Zhang, J. Mater. Chem.
A. 2014, 2, 13831-13834; g) K. Peschko, A.
Schade, S. B. Vollrath, U. Schwarz, B. Luy, C.
Muhle-Goll, P. Weis, S. Bräse, Chem. Eur. J. 2014,
20, 16273-16278; h) H.-R. Tseng, S. A. Vignon, P.
C. Celestre, J. Perkins, J. O. Jeppesen, A. Di Fabio,
R. Ballardini, M. T. Gandolfi, M. Venturi, V.
Balzani, Chem. Eur. J. 2004, 10, 155-172; i) L.
Zhang, Y.-II. Jeong, S. Zheng, H. Suh, D. H. Kang,
II. Kim, Langmuir. 2013, 29, 65-74; j) M. Nambo,
J. C. H. Yim, K. G. Fowler, C. M. Crudden, Synlett
2017, 28, 2936-2940.
a) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev.
2007, 107, 174-238; b) L. Ackermann, R. Vicente,
A. R. Kapdi, Angew. Chem. 2009, 121, 9976-
10011; Angew. Chem. Int. Ed. 2009, 48, 9792-
9826; c) O. Daugulis, H.-Q. Do, D. Shabashov, Acc.
Chem. Res. 2009, 42, 1074-1086; d) T. W. Lyons,
M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169;
e) M. Nambo, C. M. Crudden, ACS Catal. 2015, 5,
4734-4742; f) G. Qiu, J. Wu, Org. Chem. Front.
2015, 2, 169-178.
General Methods
All reactions were conducted under an inert atmosphere of
dry nitrogen. Dry solvents were purchased from Sigma-
Aldrich and used without further purification. Unless
otherwise stated, reagents were commercially available and
used as purchased. Chemicals were obtained from Sigma-
Aldrich, Acros, Alfa-Aesar, TCI and solvents were
purchased from Fisher Scientific. TLC was performed with
Merck TLC Silicagel60 F254 plates with detection under UV
light at 254 nm. Silica gel (230–400 mesh, Silicycle) was
used for flash chromatography. The H NMR and 13C{1H}
1
NMR spectra were obtained using a Brüker AM-500
Fourier-transform NMR spectrometer at 500 and 125 MHz,
respectively. Chemical shifts are reported in units of parts
per million (ppm) downfield from tetramethylsilane (TMS,
δ 0.00 ppm) for 1H NMR, CDCl3 (δ 77.16 ppm) and 13C{1H}
NMR and all coupling constants are reported in hertz. The
infrared spectra were obtained with KBr plates using a
Perkin-Elmer Spectrum 100 Series FTIR spectrometer.
High resolution mass spectrometry (HRMS) data were
obtained on a Waters LC-TOF mass spectrometer (model
LCT-XE Premier) using chemical ionization (CI) or
electrospray ionization (ESI) in positive or negative mode,
depending on the analyte.
[2]
General Procedure for the Pd-catalyzed Triarylation of
Methyl Heteroaromatics
An oven-dried 8 mL reaction vial equipped with a stir bar
was charged with methyl heteroaromatics (1, 0.20 mmol,
1.0 equiv) and aryl halides (5, 5.0–6.0 equiv) in a glove box
under a nitrogen atmosphere at room temperature. A stock
solution containing Pd(OAc)2 (2.2 mg, 0.01 mmol, 5.0
mol %) and cataCXium A (7.2 mg, 0.02 mmol, 10.0 mol %)
in 2 mL of dry o-xylene was taken up by syringe and added
to the reaction vial under nitrogen. Next, NaOt-Bu (5.0–6.0
equiv) was added to the reaction mixture. The vial was
capped, removed from the glove box, and stirred for 6 h at
130 °C. After cooling to room temperature, the reaction
mixture was opened to air. Water (10 mL) was then added
and the solution was extracted with ethyl acetate (3 × 10
mL). The combined organic phase was dried over Na2SO4
and was concentrated in vacuo. The crude material was
loaded onto a deactivated silica gel column and purified by
flash chromatography to afford the products.
[3]
[4]
T. Niwa, H. Yorimitsu, K. Oshima, Org. Lett. 2007,
9, 2373-2375.
a) J. -J. Chen, S. Onogi, Y. -C. Hsieh, C.-C. Hsiao,
S. Higashibayashi, H. Sakurai, Y.-T. Wu, Adv.
Synth. Catal. 2012, 354, 1551-1558; b) X. Cao, W.
Yang, C. Liu, F. Wei, K. Wu, W. Sun, J. Song, L.
Xie, W. Huang, Org. Lett. 2013, 15, 3102-3105.
M. Nambo, M. Yar, J. D. Smith, C. M. Crudden,
Org. Lett. 2015, 17, 50-53.
[5]
[6]
K. Tsuchida, Y. Senda, K. Nakajima, Y.
Nishibayashi, Angew. Chem. 2016, 128, 9880-
9884; Angew. Chem. Int. Ed. 2016, 55, 9728-9734.
a) J. Zhang, A. Bellomo, A. D. Creamer, S. D.
Dreher, P. J. Walsh, J. Am. Chem. Soc. 2012, 134,
13765-13772; b) N. Hussain, G. Frensch, J. Zhang,
P. J. Walsh, Angew. Chem. 2014, 126, 3767-3771;
Angew. Chem. Int. Ed. 2014, 53, 3693-3697; c) J.
Zhang, A. Bellomo, N. Trongsiriwat, T. Jia, P. J.
Carroll, S. D. Dreher, M. T. Tudge, H. Yin, J. R.
Robinson, E. J. Schelter, J. Am. Chem. Soc. 2014,
136, 6276-6287; d) B.-S. Kim, J. Jimenez, F. Gao,
P. J. Walsh, Org. Lett. 2015, 17, 5788-5791; e) M.
Li, M. González‐ Esguevillas, S. Berritt, X. Yang,
A. Bellomo, P. J. Walsh, Angew. Chem. 2016, 128,
2875-2879; Angew. Chem. Int. Ed. 2016, 55, 2825-
2829; f) X. Yang, B.-S. Kim, M. Li, P. J. Walsh,
Org. Lett. 2016, 18, 2371-2374; g) J. Zhang, S.-C.
Sha, A. Bellomo, N. Trongsiriwat, F. Gao, N. C.
Tomson, P. J. Walsh, J. Am. Chem. Soc. 2016, 138,
4260-4266.
[7]
Acknowledgements
We gratefully acknowledge the financial support from Nanjing
Tech University and SICAM Fellowship from Jiangsu National
Synergetic Innovation Center for Advanced Materials. We thank
the National Science Foundation (CHE-1464744) and National
Institutes of Health (NIGMS 104349) for financial support.
References
[1]
a) P. R. Ashton, R. Ballardini, V. Balzani, A. Credi,
K. R. Dress, E. Ishow, C. J. Kleverlaan, O. Kocian,
J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi,
S. Wenger, Chem. Eur. J. 2000, 6, 3558-3574; b)
M. Bělohradský, A. M. Elizarov, J. F. Stoddart,
[8]
a) B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc.
1997, 119, 12382-12383; b) M. Palucki, S. L.
5
This article is protected by copyright. All rights reserved.