Table 1. Desymmetrization of the Meso 1,3-Diol 7
yield (%)
Figure 1. Structures of mycothiol (1), mycothiol disulfide (2),
and mycothiol bimane (3).
temp time
entry
Xa
reagents
solvent (°C) (h)
6
8
9
1
2
3
4
5
6
7
8
9
ketopinate ꢀ
pyr.
4
4
4
4
4
4
4
4
4
4
35 19 10b
27 23 7c
32 12 8d
acquired routinely in e1.5 mg for every liter of the M.
smegmatis cell culture.7 Chemical synthesis,8 on the other
hand, is hampered by difficulties in the regioselective
protection and desymmetrization of myo-inositol, the R-
stereoselective glycosidic bond formation, and the epimer-
ization-prone cysteine introduction. Given our experience
with regioselective inositol desymmetrization9 as well
as the R-D-glucosamine formation for heparan sulfate
synthesis,10 we decided to apply these related approaches
in mycothiol preparation. Scheme 1 illustrates our retro-
synthetic plan. As a direct precursor of 1, we envisioned
that the pseudodisaccharide 4 could be generated from the
thioglycoside 5 and the 3-ketopinate 6. The protecting
group combination of the D-glucosamine-derived 5 is
OH
OH
Cl
EDC, DMAP
EDC, DMAP
Et3N
THF
CH2Cl2
CH2Cl2
63 22
0
Cl
Et3N, DMAP CH2Cl2
35 15 28e
Cl
Et3N, DMAP CH2Cl2 ꢀ40 24 65 26
0
0
0
0
0
Cl
ꢀ
pyr.
4
4
66 21
ꢀ40 24 69 24
60 32
Cl
DMAP
DIPEA
pyr.
Cl
CH2Cl2
4
4
10 Cl
DIPEA, DMAP CH2Cl2 ꢀ40 24 63 31
Et3N, DMAP CH3CN
Et3N, DMAP CH3CN ꢀ40 24 26 17
11 Cl
12 Cl
4
4
30 27 11
0
a 1.1 equiv of the (1S)-ketopinyl sources were used. b 30% of 7
was recovered. c 38% of 7 was recovered. d 44% of 7 was recovered.
e 13% of 7 was recovered. EDC: 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide.
instrumental in assuring exclusive R-linkage in our pre-
paration of heparan sulfate derivatives.10b Conversely, the
3-ketopinate 6 would be achievable by desymmetrization
of the meso 1,3-diol 7, which could be generated from the
commercially available myo-inositol 1,3,5-orthoformate
(Kishi’s triol) in four known steps.11 (1S)-Ketopinate
was chosen from other chiral derivatizing agents (e.g.,
camphanic acid, N-tosyl-L-proline, and Mosher’s acid)
because its monoesters with 7 could be effectively sepa-
rated by silica gel column chromatography.
Scheme 1. Retrosynthetic Analysis of Mycothiol (1)a
We first examined various conditions for the desym-
metrization of the 1,3-diol 7 (Table 1). The favorable
formation of the 3-O-ketopinyl 6 over its 1-O counterpart
(compound 8) was apparent from the use of (1S)-ketopinic
a 2-NAP: 2-naphthylmethyl, p-BrBn: p-bromobenzyl, Tol: toluenyl,
TBDPS: tert-butyldiphenylsilyl.
(9) (a) Patil, P. S.; Hung, S.-C. Chem.;Eur. J. 2009, 15, 1091–1094.
(b) Patil, P. S.; Hung, S.-C. Org. Lett. 2010, 12, 2618–2621. (c) Padiyar,
L. T.; Wen, Y.-S.; Hung, S.-C. Chem. Commun. 2010, 46, 5524–5526.
(10) (a) Lu, L.-D.; Shie, C.-R.; Kulkarni, S. S.; Pan, G.-R.; Lu, X.-A.;
Hung, S.-C. Org. Lett. 2006, 8, 5995–5998. (b) Hu, Y.-P.; Lin, S.-Y.;
Huang, C.-Y.; Zulueta, M. M. L.; Liu, J.-Y.; Chang, W.; Hung, S.-C.
Nat. Chem. 2011, 3, 557–563.
(11) Conway, S. J.; Gardiner, J.; Grove, S. J. A.; Johns, M. K.; Lim,
Z.-Y.; Painter, G. F.; Robinson, D. E. J. E.; Schieber, C.; Thuring, J. W.;
Wong, L. S.-M.; Yin, M.-X.; Burgess, A. W.; Catimel, B.; Hawkins,
P. T.; Ktistakis, N. T.; Stephens, L. R.; Holmes, A. B. Org. Biomol.
Chem. 2010, 8, 66–76.
(6) (a) Rawat, M.; Newton, G. L.; Ko, M.; Martinez, G. L.; Fahey,
R. C.; Av-Gay, Y. Antimicrob. Agents Chemother. 2002, 46, 3348–3355.
(b) Ung, K. S. E.; Av-Gay, Y. FEBS Lett. 2006, 580, 2712–2716.
(7) Steenkamp, D. J.; Vogt, R. N. Anal. Biochem. 2004, 325, 21–27.
(8) (a) Jardine, M. A.; Spies, H. S. C.; Nkambule, C. M.; Gammon,
D. W.; Steenkamp, D. J. Bioorg. Med. Chem. 2002, 10, 875–881. (b)
ꢀꢁ
Nicholas, G. M.; Kovac, P.; Bewley, C. A. J. Am. Chem. Soc. 2002, 124,
3492–3493. (c) Lee, S.; Rosazza, J. P. N. Org. Lett. 2004, 6, 365–368. (d)
Stewart, M. J. G.; Jothivasan, V. K.; Rowan, A. S.; Wagg, J.; Hamilton,
C. J. Org. Biomol. Chem. 2008, 6, 385–390. (e) Ajayi, K.; Thakur, V. V.;
Lapo, R. C.; Knapp, S. Org. Lett. 2010, 12, 2630–2633.
Org. Lett., Vol. 13, No. 20, 2011
5497