4504
E. Cichero et al. / European Journal of Medicinal Chemistry 46 (2011) 4489e4505
[20] A.I. Idris, R.J. van’t Hof, I.R. Greig, S.A. Ridge, D. Baker, R.A. Ross, S.H. Ralston,
Regulation of bone mass, bone loss and osteoclast activity by cannabinoid
receptors, Nat. Med. 11 (2005) 774e779.
new analogues with improved potency so as to synthesize new
indoles showing high CB2 affinity.
[21] Z.L. Lu, J.W. Saldanha, E.C. Hulme, Seven-transmembrane receptors: crystals
clarify, Trends Pharmacol. 23 (2002) 140e146.
[22] O.M. Salo, K.H. Raitio, J.R. Savinainen, T. Nevalainen, M. Lahtela-Kakkonen,
J.T. Laitinen, T. Järvinen, A. Poso, Virtual screening of novel CB2 ligands using
a comparative model of the human cannabinoid CB2 receptor, J. Med. Chem.
48 (2005) 7166e7171;
Acknowledgements
This work was financially supported by the University of Gen-
ova, MIUR FIRB ITALBIONET (RBPR05ZK2Z and RBIN064YAT_003),
flagship InterOmics. Prof. Stefano Moro, Dr. Marco Fanton and Dr.
Giuseppe Marson are gratefully acknowledged. E.C. was financially
supported by a post-doc fellowship, Area Chimica, University of
Genova.
T. Tuccinardi, P.L. Ferrarini, C. Manera, G. Ortore, G. Saccomanni, A. Martinelli,
Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking
analysis, J. Med. Chem 49 (2006) 984e994;
S. Durdagi, M.G. Papadopoulos, P.G. Zoumpoulakis, C. Koukoulitsa,
T. Mavromoustakos, A computational study on cannabinoid receptors and
potent bioactive cannabinoid ligands: homology modeling, docking, de novo
drug design and molecular dynamics analysis, Mol. Divers 14 (2010)
257e276.
Appendix. Supplementary material
[23] V. Cherezov, D.M. Rosenbaum, M.A. Hanson, S.G. Rasmussen, F.S. Thian,
T.S. Kobilka, H.J. Choi, P. Kuhn, W.I. Weis, B.K. Kobilka, R.C. Stevens, High-
Supplementary data associated with this article can be found, in
resolution crystal structure of an engineered human beta2-adrenergic
G
protein-coupled receptor, Science 318 (2007) 1258e1265.
[24] V.P. Jaakola, M.T. Griffith, M.A. Hanson, V. Cherezov, E.Y. Chien, J.R. Lane,
A.P. Ijzerman, R.C. Stevens, The 2.6 angstrom crystal structure of a human A2A
adenosine receptor bound to an antagonist, Science 322 (2008) 1211e1217.
[25] K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I. Le
Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto, M. Miyano, Crystal
structure of rhodopsin: a G protein-coupled receptor, Science 289 (2000)
739e745.
[26] J.M. Frost, M.J. Dart, K.R. Tietje, T.R. Garrison, G.K. Grayson, A.V. Daza, O.F. El-
Kouhen, L.N. Miller, L. Li, B.B. Yao, G.C. Hsieh, M. Pai, C.Z. Zhu, P. Chandran,
M.D. Meyer, Indol-3-yl-tetramethylcyclopropyl ketones: effects of indole ring
substitution on CB2 cannabinoid receptor activity, J. Med. Chem. 51 (2008)
1904e1912.
References
[1] S.L. Palmer, G.A. Thakur, A. Makriyannis, Cannabinergic ligands, Chem. Phys.
Lipids 121 (2002) 3e19.
[2] A.C. Howlett, F. Barth, T.I. Bonner, G. Cabral, P. Casellas, W.A. Devane,
C.C. Felder, M. Herkenham, K. Mackie, B.R. Martin, R. Mechoulam,
R.G. Pertwee, International Union of Pharmacology. XXVII. Classification of
cannabinoid receptors, Pharmacol. Rev. 54 (2002) 161e202.
[3] R.G. Pertwee, Cannabinoid receptors and pain, Prog. Neurobiol. 63 (2001)
569e611.
[4] P. Goya, N. Jagerovic, L. Hernandez-Folgado, M.I. Martin, Cannabinoids and
neuropathic pain, Mini Rev. Med. Chem. 3 (2003) 765e772.
[27] MOE: Chemical Computing Group Inc. Montreal. H3A 2R7 Canada. http://
[28] A. Bairoch, R. Apweiler, The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000, Nucleic Acids Res. 28 (2000) 45e48.
[29] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Beth, H. Weissig,
I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Res. 28
(2000) 235e242.
[30] W.D.C.P. Cornell, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson,
D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A.J. Kollman, A second generation
force field for the simulation of proteins, nucleic acids and organic molecules,
J. Am. Chem. Soc. 117 (1995) 5179e5196.
[5] A. Calignano, G. La Rana, D. Piomelli, Antinociceptive activity of the endoge-
nous fatty acid amide, palmitylethanolamide, Eur. J. Pharmacol. 419 (2001)
191e198.
[6] V. Di Marzo, C.S. Breivogel, Q. Tao, D.T. Bridgen, R.K. Razdan, A.M. Zimmer,
B.R. Martin, Levels, metabolism, and pharmacological activity of anandamide
in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-
CB(2) receptor-mediated actions of anandamide in mouse brain, Neuro-
[31] T. Tuccinardi, P.L. Ferrarini, C. Manera, G. Ortore, G. Saccomanni, A. Martinelli,
Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking
analysis, J. Med. Chem. 49 (2006) 984e994.
[32] D.I. Chan, D.P. Tieleman, H.J. Vogel, Molecular dynamics simulations of beta-
ketoacyl-, beta-hydroxyacyl-, and trans-2-enoyl-acylcarrier proteins of
Escherichia coli, Biochemistry 49 (2010) 2860e2868.
[33] S.J. Marrink, X. Periole, D.P. Tieleman, A.H. de Vries, Comment on ‘On using
a too large integration time step in molecular dynamics simulations of coarse-
grained molecular models, Phys. Chem. Chem. Phys. 12 (2010) 2254e2256.
[34] S. Baoukina, S.J. Marrink, D.P. Tieleman, Lateral pressure profiles in lipid
monolayers, Faraday Discuss. 144 (2010) 393e409.
[7] N. Hájos, C. Ledent, T.F. Freund, Cannabinoids inhibit hippocampal GABAergic
transmission and network oscillations, Neuroscience 12 (2000) 3239e3249.
[8] G.T. Whiteside, G.P. Lee, K.J. Valenzano, The role of the cannabinoid CB2
receptor in pain transmission and therapeutic potential of small molecule CB2
receptor agonists, Curr. Med. Chem. 14 (2007) 917e936.
[9] J.C. Ashton, Cannabinoids for the treatment of inflammation, Curr. Opin.
Investig. Drugs 8 (2007) 373e384.
[10] G.M. Giblin, C.T. O’Shaughnessy, A. Naylor, W.L. Mitchell, A.J. Eatherton,
B.P. Slingsby, D.A. Rawlings, P. Goldsmith, A.J. Brown, C.P. Haslam,
N.M. Clayton, A.W. Wilson, I.P. Chessell, A.R. Wittington, Green, R Discovery of
2-[(2,4-dichlorophenyl)amino]-N-[(tetrahydro-
2H-pyran-4-yl)methyl]-4-
[35] C. Kutzner, D. Van der Spoel, M. Fechner, E. Lindahl, U.W. Schmitt, B.L. De
Groot, H.J. Grubmüller, Speeding up parallel GROMACS on high-latency
networks, J. Comput. Chem. 28 (2007) 2075e2084.
[36] B. Hess, C. Kutzner, D. Van der Spoel, E.J. Lindahl, GROMACS 4: algorithms for
highly efficient, load-balanced, and scalable molecular simulations, Chem.
Theory Comput. 4 (2008) 435e447.
[37] W.F. Van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hunenberger, P. Kruger,
A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular simulation, in: The GRO-
MOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zurich,
1996, pp. 1e1042.
[38] O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid
bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure,
and constant temperature, Biophys. J. 72 (1997) 2002e2013.
[39] A.W. Schuettelkopf, D.M.F. Van Aalten, PRODRG e a tool for high-throughput
crystallography of protein-ligand complexes, Acta Crystallogr. D 60 (2004)
1355e1363.
[40] J.A. Lemkul, W.J. Allen, D.R. Bevan, Practical Considerations for Building
GROMOS-Compatible small molecule Topologies, J. Chem. Inf. Model. 50
(2010) 2221e2235.
[41] J. Wang, W. Wang, P.A. Kollman, D.A. Case, Automatic atom type and bond
type perception in molecular mechanical calculations, J. Mol. Graph. Model. 25
(2006) 247e260.
[42] A. Jakalian, B.L. Bush, D.B. Jack, C.I. Bayly, Fast efficient generation of high-
quality atomic charges, AM1-BCC Model: Method J. Comput. Chem. 21
(2000) 132e146.
[43] A. Jakalian, D.B. Jack, C.I. Bayly, Fast, efficient generation of high-quality
atomic charges. AM1-BCC model: II. Parameterization and validation,
J. Comput. Chem. 23 (2002) 1623e1641.
(trifluoromethyl)- 5-pyrimidinecarboxamide, a selective CB2 receptor agonist
for the treatment of inflammatory pain, J. Med.Chem. 50 (2007) 2597e2600.
[11] J. Guindon, A.G. Hohmann, Cannabinoid CB2 receptors: a therapeutic target
for the treatment of inflammatory and neuropathic pain, Br. J. Pharmacol. 153
(2008) 319e334.
[12] A.D. Khanolkar, D. Lu, M. Ibrahim, R.I. Duclos, G.A. Thakur, T.P. Malan,
F. Porreca, V. Veerappan, X. Tian, C. George, D.A. Parrish, D.P. Papahatjis,
A. Makriyannis, Cannabilactones: a novel class of CB2 selective agonists with
peripheral analgesic activity, J. Med. Chem. 50 (2007) 6493e6500.
[13] J. Fernandez-Ruiz, J. Romero, G. Velasco, R.M. Tolon, J.A. Ramos, M. Guzman,
Cannabinoid CB2 receptor: a new target for controlling neural cell survival?
Trends Pharmacol. Sci. 28 (2007) 39e45.
[14] M. Maccarrone, N. Battista, D. Centonze, The endocannabinoid pathway in
Huntington’s disease: a comparison with other neurodegenerative diseases,
Prog. Neurobiol. 81 (2007) 349e379.
[15] D. Centonze, A. Finazzi-Agro, G. Bernardi, M. Maccarrone, The endocannabi-
noid system in targeting inflammatory neurodegenerative diseases, Trends
Pharmacol. Sci. 28 (2007) 180e187.
[16] R.J. McKallip, C. Lombard, M. Fisher, B.R. Martin, S. Ryu, S. Grant,
P.S. Nagarkatti, M. Nagarkatti, Targeting CB2 cannabinoid receptors as a novel
therapy to treat malignant lymphoblastic disease, Blood 100 (2002) 627e634.
[17] G. Velasco, I. Galve-Roperh, C. Sánchez, C. Blázquez, M. Guzmán, Hypothesis:
cannabinoid therapy for the treatment of gliomas? Neuropharmacology 47
(2004) 315e323.
[18] R.G. Pertwee, Cannabinoids and multiple sclerosis, Pharmocol. Therapeut 95
(2002) 165e174.
[19] O. Ofek, M. Karsak, N. Leclerc, M. Fogel, B. Frenkel, K. Wright, J. Tam, M. Attar-
Namdar, V. Kram, E. Shohami, R. Mechoulam, A. Zimmer, I. Bab, Peripheral
cannabinoid receptor, CB2, regulates bone mass, Proc. Natl. Acad. Sci. U.S.A.
103 (2006) 696e701.
[44] Javier Ramos, Víctor L. Cruz, Javier Martínez-Salazar, Nuria E. Campillo, Juan
A. Páez, Dissimilar interaction of CB1/CB2 with lipid bilayers as revealed by