4
Tetrahedron
E. Díaz-ÁIvarez, A. Criado, D. Pérez, D. Peña, E. Guitián, Angew.
Chem., Int. Ed., 2012, 124, 177.
acid 1y were used to react with 2,2'-dibromobiphenyl 2a
respectively, a regioisomeric mixture was generated. 1,6-Cyclized
triphenylene and 1,2-cyclized triphenylene were produced and could
not be isolated by silica chromatography since they own completely
same retention factor value. The HNMR analysis showed the ratio
of 3b to 3b' was 1:1.4 and the ratio of 3i to 3i' was 1:1.1. The reason
8. (a) A. Sygula, R. Sygula, L. Kobryn, Org. Lett., 2008, 10, 3927;
(b) J. Yin, H. Qu, K. Zhang, C. Chi, J. Wu, Org. Lett., 2009, 11,
3028; (c) P. T. Lynett, K. E. Maly, Org. Lett., 2009, 11, 3726; (d)
L. Chen, C. Zhang, C. Wen, K. Zhang, W. Liu, Q. Chen, Catal.
Commun. 2015, 65, 81.
9. Z. Liu, R. C. Larock, J. Org. Chem., 2007, 72, 223.
10. H. S. Kim, S. Gowrisankar, E. S. Kim, J. N. Kim, Tetrahedron
Lett., 2008, 49, 6569.
1
for such regioselectivity was unknown.
Conlusions
11. A. A. Cant, L. Roberts, M. F. Greaney, Chem. Comm., 2010, 46,
8671.
In conclusion, we have developed a highly efficient palladium-
catalyzed cascade annulations from 2,2'-dibromobiphenyls and
arylboronic acids for the synthesis of various functionalized
triphenylenes. This is the first case that mono-metallic reagents were
used to prepare triphenylenes. Compared with the previous double
couplings of dimetallic reagents with dihaloarenes, this methodology
showed very excellent atomic economy and reduction of synthesis
cost. Compared with the conventional cyclotrimerization of arynes,
the present strategy showed high regioselectivity and the synthetic
feasibility of unsymmetrical triphenylenes. For some meta-
substituted arylboronic acids, this cyclization process showed
excellent regiospecificity. This methodology also provides a highly
efficient and low-cost approach to dibenzochrysene derivatives
starting from simple, commercially available reactants in one step.
Further studies on the application of the present annualtion strategy
for the preparation of other functional material are in progress.
12. J.-A. Garcia-Lopez, M. F. Greaney, Org. Lett., 2014, 16, 2338.
13. Y. Terao, H. Wakui, M. Nomoto, T. Satoh, M. Miura, M. Nomura,
J. Org. Chem., 2003, 68, 5236.
14. (a) M. Iwasaki, Y. Araki, S. Iino, Y. Nishihara, J. Org. Chem.,
2015, 80, 9247; (b) M. Iwasaki, S. Lino, Y. Nishihara, Org. Lett.,
2013, 15, 5326.
15. S. Pan, H. Jiang, Y. Zhang, D. Chen, Y. Zhang, Org. Lett. 2016,
18, 5192.
16. (a) S. Yang, F. Wang, Y. Wu, W. Hua, F. Zhang, Org. Lett. 2018,
20, 1491; (b) X. Wu, J. Han, L. Wang, J. Org. Chem. 2018, 83,
49-56.
17. (a) Y. Kurata, S. Otsuka, N. Fukui, K. Nogi, H. Yorimitsu, A.
Osuka, Org. Lett. 2017, 19, 1274; (b) M. Daigle, A. Picard-
Lafond, E. Soligo, J.-F. Morin, Angew. Chem., Int. Ed., 2016, 55,
2042.
18. (a) N. Miyaura, Cross-Coupling reactions, Springer, 2001; (b) F.
Diederich, eds.; Metal-Catalyzed Cross-Coupling Reactions,
Wiley-VCH, 1998 (1st edition), 2004 (2nd edition); c) D. G. Hall,
eds.; Boronic Acids, Wiley-VCH, 2005.
19. (a) T. Takahashi, R. Hara, Y. Nishihara, M. Kotora, J. Am. Chem.
Soc., 1996, 118, 5154; (b) T. Takahashi, Y. Li, P. Stepnicka, M.
Kitamura, Y. Liu, K. Nakajima, M. Kotora, J. Am. Chem. Soc.,
2002, 124, 576; (c) T. Seri, H. Qu, L. Zhou, K. I. Kanno, T.
Takahashi, Chem. Asian J., 2008, 3, 388; (d) C. L. Hilton, C. R.
Jamison, B. T. King, J. Am. Chem. Soc., 2006, 128, 14824; (e) C.
L. Hilton, J. M. Crowfoot, P. Rempala, B. T. King, J. Am. Chem.
Soc., 2008, 130, 13392; (f) C. L. Hilton, C. R. Jamison, H. K.
Zane, B. T. King, J. Org. Chem., 2009, 74, 405.
20. (a) A. F. Littke, L. Schwarz, G. C. Fu, J. Am. Chem. Soc., 2002,
124, 6343; (b) X. Xue, L. T. Scott, Org. Lett., 2007, 9, 3937; (c) I.
Nagao, M. Shimizu, T. Hiyama, Angew. Chem., Int. Ed., 2009, 48,
7573; (d) M. Shimizu, I. Nagao, S.-i, Kiyomoto, T. Hiyama, Aust.
J. Chem., 2012, 65, 1277.
21. (a) J. W. Goodby, M. Hird, K. J. Toyne, T. Watson, J. Chem. Soc.
Chem. Commun., 1994, 1701; (b) H. Kurata, Y. Takehara, S. Kim,
K. Sakai, K. Matsumoto, T. Kawase, M. Oda, Synlett, 2007, 2053;
(c) M. Shimizu, I. Nagao, Y. Tomioka, T. Hiyama, Angew. Chem.,
Int. Ed., 2008, 47, 8096; (d) M. Shimizu, I. Nagao, Y. Tomioka, T.
Kadowaki, T. Hiyama, Tetrahedron, 2011, 67, 8014.
22. L. Zhou, K. Nakajima, K.-i, Kanno, T. Takahashi, Tetrahedron
Lett., 2009, 50, 2722.
Acknowledgments
We are grateful for the financial support from the National Natural
Science Foundation of China (21302117 and 21572123), the Natural
Science Foundation of Shaanxi Province (2018JM2049) and
Fundamental Research Funds for the Central Universities
(GK201603047 and GK201601003).
References and notes
1. For reviews, see: (a) A. J. Berresheim, M. Müller, K. Müllen,
Chem. Rev., 1999, 99, 1747.; (b) M. D. Watson, A. Fechtenkötter,
K. Müllen, Chem. Rev., 2001, 101, 1267; (c) M. Bendikov, F.
Wudl, D. F. Perepichka, Chem. Rev., 2004, 104, 4891; (d) J. E.
Anthony, Chem. Rev., 2006, 106, 5028; (e) S. Sergeyev, W.
Pisula, Y. H. Geerts, Chem. Soc. Rev., 2007, 36, 1902; (f) J. Wu,
W. Pisula, K. Müllen, Chem. Rev., 2007, 107, 718; (g) A. R.
Murphy, J. M. J. Fréchet, Chem. Rev., 2007, 107, 1066; (h) M.
Watanabe, K.-Y. Chen, T. J. Chow, Acc. Chem. Res., 2013, 46,
1606.
2. (a) L. A. Tatum, C. J. Johnson, A. A. P. Femando, B. C. Ruch, K.
K. Barakoti, M. A. Alpuche-Aviles, B. T. King, Chem. Sci., 2012,
3, 3261; (b) T. Osawa, T. Kajitani, D. Hashizume, H. Ohsumi, S.
Sasaki, M. Takata, Y. Koizumi, S. Saeki, S. Seki, T. Fukushima,
T. Aida, Angew. Chem., Int. Ed., 2012, 51, 7990; (c) J. J. Lee, A.
Yamaguchi, M. A. Aluam, Y. Yamamoto, T. Fukushima, K. Kato,
M. Takata, N. Fujita, T. Aida, Angew. Chem., Int. Ed., 2012, 51,
8490.
23. (a) R. A. Begum, N. Chanda, T. V. V. Ramakrishna, P. R. Sharp,
J. Am. Chem. Soc., 2005, 127, 13494; (b) Chanda, N.; P. R. Sharp,
Organometallics, 2007, 26, 1635.
24. J. S. Brown, P. Sharp, Organometallics, 2003, 22, 3604.
25. (a) S. Yamaguchi, T. M. Swager, J. Am. Chem. Soc., 2001, 123,
12087; (b) S. J. Toal, W. C. Trogler, J. Mater. Chem., 2006, 16,
2871-2883; (c) C.-W. Li, C.-I. Wang, H.-Y. Liao, R. Chaudhuri,
R.-S. Liu, J. Org. Chem., 2007, 72, 9203; (d) R. Chaudhuri, M.-Y.
Hsu, C.-W. Li, C.-I. Wang, C.-J. Chen, C. K. Lai, L.-Y. Chen, S.-
H. Liu, C.-C. Wu, R.-S. Liu, Org. Lett., 2008, 10, 3053; (e) K.
Mochida, K. Kawasumi, Y. Segawa, K. Itami, J. Am. Chem. Soc.,
2011, 133, 10716.
3. (a) M. O' Neill, S. M. Kelly, Adv. Mater., 2003, 15, 1135; (b) S.
Kumar, Chem. Soc. Rev., 2006, 35, 83; (c) S. Sergeyev, W. Pisula,
Y. H. Geerts, Chem. Soc. Rev., 2007, 36, 1902; (d) S. Laschat, A.
Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele,
E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem.,
Int. Ed., 2007, 46, 4832.
26. J. Ma, G. Li, Y. Qiao, J. Tu, S. Liu, F. Xu, Synlett, 2015, 26, 1991.
Supplementary Material
4. (a) R. Freudenmann, B. Behnisch, M. Hanack, J. Mater. Chem.,
2001, 11, 1618; (b) K. Togashi, S. Nomura, N. Yokoyama, T.
Yasuda, C. Adachi, J. Mater. Chem., 2012, 22, 20689.
5. D. Pérez, E. Guitián, Chem. Soc. Rev., 2004, 33, 274.
6. D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, Angew.
Chem., Int. Ed., 1998, 37, 2659.
7. (a) D. Peña, A. Cobas, D. Pérez, E. Guitián, L. Castedo, Org. Lett.,
2000, 2, 1629; (b) D. Peña, A. Cobas, D. Pérez, E. Guitián, L.
Castedo, Org. Lett., 2003, 5, 1863; (c) B. Iglesias, A. Cobas, D.
Pérez, E. Guitián, Org. Lett., 2004, 6, 3557; (d) J. M. Alonso, A.
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
Click here to remove instruction text...