70
J.Á. Bisceglia et al. / Journal of Molecular Structure 1026 (2012) 65–70
Fig. 4. Detail of the 1HNMR spectrum of benzamide 1g showing line broadening.
that benzamide 1d shows an intermediate E/Z ratio between form-
amide 1a and acetamide 1b. This apparently lower effective size of
the phenyl might be a consequence of a larger N–CO bond distance
due to cross conjugation or may alternatively be indicative of addi-
tional (non purely steric) interactions.
Acknowledgements
This work was supported by the University of Buenos Aires
(20020100100935) and by CONICET (PIP 286).
Introduction of a halogen atom in the 40 position of the N-aryl
group also increases the Z preference. The proportion is roughly
the same for acetamides and formamides, independently of the
nature of the halogen. The same trend is evident when comparing
benzamides 1h and 1g, indicating that replacement of a phenyl by
a p-tolyl group has little influence on the E/Z ratio.
References
[1] V. Sharma, M.S. Khan, Eur. J. Med. Chem. 36 (2001) 651.
[2] M.C. Caterina, M.V. Corona, I.A. Perillo, A. Salerno, Heterocycles 78 (2009) 771.
and references therein.
[3] (a) M.S. Khan, M. Gupta, Pharmazie 57 (2002) 377;
(b) M. Kalyanam, P.C. Parthasarathy, I. Ananthan, S.G. Manyunatha, M.A.
Likhate, Indian J. Chem., Sect. B 31 (1992) 243.
When compared with the corresponding homologous hexahy-
dropyrimidines 2 [15] (Table 5), compounds 1 show a greater Z
preference regardless of the nature of the R and N-Ar substituents,
indicative of a clear ring size effect. Moreover, this change in the ring
size influences unevenly the effects of the R and N-Ar substituents
on the E/Z equilibrium: in hexahydropyrimidine derivatives, the Z
preference increases gradually in the series H < Me < Et < iPr [15],
wich somehow differs from the previously discussed behavior of
compounds 1a–c. In addition, in the hexahydropyrimidine
derivatives, benzamide 2d has approximately the same E/Z ratio
than formamide 2a, at variance with the corresponding hexahydro
diazepines.
[4] J.A. Bisceglia, M.B. García, R. Massa, M.L. Magri, M. Zani, G.O. Gutkind, L.R.
Orelli, J. Heterocycl. Chem. 41 (2004) 85.
[5] (a) J. Billman, M. Khan, J. Med. Chem. 11 (1968) 312;
(b) Y.H. Chang, G.R. Evanenga, W.M. McLamore, US Patent 3 729 564, Chem.
Abstr. 79 (1974) 18762.
[6] (a) B.T. Golding, I.K. Nassereddin, J. Chem. Soc. (1985) 2011;
(b) R.J. Bergeron, H.W. Seligsohn, Bioorg. Chem. 14 (1986) 345.
[7] R.B. Moodie, M.Z. Moustras, G. Read, J.P.B. Sandall, J. Chem. Soc. PT2 (1997)
169.
[8] J.Á. Bisceglia, J.E. Díaz, R.A. Torres, L.R. Orelli, Tetrahedron Lett. 52 (2011) 5238.
[9] S. Pedersoli, C.F. Tormena, R. Rittner, J. Mol. Struct. 875 (2008) 235. and
references therein.
[10] E. Kleinpeter, J. Mol. Struct. 380 (1999) 139.
[11] A.G. Martínez, E.T. Vilar, A.G. Fraile, P. Martínez-Ruiz, J. Phys. Chem. A 106
(2002) 4942. and refrences therein.
[12] A.N. Troganis, E. Sicilia, K. Barbarrossou, I.P. Gerothanassis, N. Russo, J. Phys.
Chem. A 109 (2005) 11878. and references therein.
[13] W.E. Stewart, T.H. Siddall, Chem. Rev. 70 (1970) 517.
[14] (a) C. Suárez, M. Tafazzoli, N.S. True, S. Gerrard, J. Phys. Chem. 99 (1995) 8170;
(b) Y.K. Kang, K.T. No, H.A. Scheraga, J. Phys. Chem. 100 (1996) 15588;
(c) I.K. Kang, H.S. Park, J. Mol. Struct. (THEOCHEM) 676 (2004) 171.
[15] J.Á. Bisceglia, M.C. Mollo, L.R. Orelli, J. Mol. Struct. 966 (2010) 79.
[16] M.B. García, I.A. Perillo, L.R. Orelli, J. Heterocycl. Chem. 38 (2001) 1209.
[17] M.B. García, S. Grilli, L. Lunazzi, A. Mazzanti, L.R. Orelli, J. Org. Chem. 66 (2001)
6679.
[18] M.B. García, S. Grilli, L. Lunazzi, A. Mazzanti, L.R. Orelli, Eur. J. Org. Chem. 23
(2002) 4018.
[19] M.L. Magri, N. Vanthuyne, C. Roussel, M.B. García, L.R. Orelli, J. Chromat. A 1069
(2005) 203.
[20] L.R. Orelli, N. Gruber, J. Mol. Struct. 921 (2009) 215.
[21] J.E. Díaz, M.B. García, L.R. Orelli, J. Mol. Struct. 982 (2010) 50.
[22] J.E. Díaz, N. Gruber, L. Lunazzi, A. Mazzanti, L.R. Orelli, Tetrahedron 67 (2011)
9129.
[23] J.E. Díaz, J.Á. Bisceglia, M.C. Mollo, L.R. Orelli, Tetrahedron Lett. 52 (2011) 1895.
[24] Among others: (a) P. Laszlo, Progr. Nucl. Magn. Resonance Spectrosc. 3 (1967)
231;
4. Conclusions
We report here the complete 1H and 13C NMR characterization
of a series of 1-acyl-3-arylhexahydro-1,3-diazepines 1. Such com-
pounds display E/Z isomerism due to partial (O)C–N double bond
character, showing two unequally populated sets of signals in their
1H and 13C NMR spectra. The 1H NMR resonances of both rotamers
of some selected compounds were assigned on the basis of ASIS ef-
fects and the assignments confirmed by NOESY. 13C NMR signals
were attributed by HSQC experiments for 1a,b,g. For all the com-
pounds, the E/Z equilibrium favours the Z diastereoisomer. This
preference is sensitive to steric hindrance in the carbonyl substitu-
ent R, and, to a lesser extent, to electron withdrawing groups in the
N-aryl. A comparison with the corresponding six membered
aminals shows the existence of a ring size effect which enhances
the preference for the Z rotamer.
(b) E.M. Engler, P. Laszlo, J. Am. Chem. Soc. 93 (1971) 1317;
(c) F.H.A. Rummens, R.H. Krystynak, J. Am. Chem. Soc. 94 (1972) 6914;
(d) J.T. Edward, P.G. Farrell, G.E. Langford, J. Am. Chem. Soc. 98 (1976) 3085.
To our knowledge, this is the first stereochemical study on this
novel family of seven membered heterocyclic compounds and one
of the few reports on hexahydrodiazepines in the literature.