H2O; eluent: CH2Cl2/MeOH 95 : 5) to give an orange solid
(67 mg, 85%). X-Ray quality crystals were obtained by
layering a saturated CDCl3 solution with methyl tert-butyl
ether. 1H NMR (500 MHz, CDCl3) d 7.56 (br s, 1H, HCQCH
Im), 7.20 (br s, 1H, C6H2(CH3)3), 7.09 (br s, 1H, C6H2(CH3)3),
6.84 (br s, 1H, HCQCH Im), 5.51, 5.07, 4.97 (br s, 3 ꢂ 1H,
CH p-cym), 4.87 (m, 1H, CH2Im), 4.70–4.30 (m, X ꢂ 1H,
C5H4), 4.47 (br s, 5 ꢂ 1H, C5H5), 3.71 (br s, 1H, CH p-cym),
2.69 (br s, 1H, (CH3)2CH p-cym), 2.44, 2.20, 1.98 (br s, 3 ꢂ
3H, C6H2(CH3)3), 1.81 (br s, 3H, CH3 p-cym), 1.23, 0.95 (br s,
2 ꢂ 3H, (CH3)2CH p-cym). 13C NMR (125.8 MHz, CDCl3)
d 164.53 (NCN), 141.02, 137.90, 137.45, 135.45 (4 ꢂ Cquat
C6H2(CH3)3), 129.74, 129.67 (2 ꢂ CH C6H2(CH3)3), 126.63,
122.67 (2 ꢂ HCQCH Im), 107.77, 103.52 (2 ꢂ Cquat p-cym),
97.68, 93.16, 88.51, 79.78 (4 ꢂ CH p-cym), 71.08 (C5H5),
71.5–68.0 (C5H4), 49.20 (CH2Im), 33.69 (CH2S), 29.51
((CH3)2CH p-cym), 24.77 ((CH3)2CH p-cym), 21.53
(C6H2(CH3)3), 20.41 ((CH3)2CH p-cym), 18.63, 18.62
(C6H2(CH3)3), 17.95 (CH3 p-cym). MS (ESI+) m/z 701
(M+–BF4, 100%).
Chem. Rev., 2009, 109, 3561; P. L. Arnold and I. J. Casely,
Chem. Rev., 2009, 109, 3599.
2 For selected reviews, see: D. Enders, O. Niemeier and A. Henseler,
´ ´
Chem. Rev., 2007, 107, 5606; N. Marion, S. Dıez-Gonzalez and
S. P. Nolan, Angew. Chem., Int. Ed., 2007, 46, 2988.
3 G. Gasser, I. Ott and N. Metzler-Nolte, J. Med. Chem., 2011, 54, 3;
A. Kascatan-Nebioglu, M. J. Panzner, C. A. Tessier, C. L. Cannon
and W. J. Youngs, Coord. Chem. Rev., 2007, 251, 884.
4 H. M. Lee, C. C. Lee and P. Y. Cheng, Curr. Org. Chem., 2007,
11, 1491; O. Kuhl, Chem. Soc. Rev., 2007, 36, 592; A. T. Normand
and K. J. Cavell, Eur. J. Inorg. Chem., 2008, 2781; A. John and
P. Ghosh, Dalton Trans., 2010, 39, 7183.
5 Selected papers on S–NHC ligands: M. Bierenstiel and
E. D. Cross, Coord. Chem. Rev., 2011, 255, 574, and references
therein; C. Fliedel and P. Braunstein, Organometallics, 2010,
29, 5614; C. Fliedel, A. Sabbatini and P. Braunstein, Dalton Trans.,
2010, 39, 8820; C. Fliedel, G. Schnee and P. Braunstein, Dalton
´
Trans., 2009, 2474; A. Ros, M. Alcarazo, D. Monge, E. Alvarez,
R. Fernandez and J. M. Lassaletta, Tetrahedron: Asymmetry, 2010,
´
21, 1557; S. J. Roseblade, A. Ros, D. Monge, M. Alcarazo,
E. Alvarez, J. M. Lassaletta and R. Fernandez, Organometallics,
2007, 26, 2570; A. Ros, D. Monge, M. Alcarazo, E. Alvarez,
J. M. Lassaletta and R. Fernandez, Organometallics, 2006,
25, 6039; H. V. Huynh, D. Yuan and Y. Han, Dalton Trans.,
2009, 7262; H. V. Huynh, C. H. Yeo and G. K. Tan, Chem.
Commun., 2006, 3833.
6 C. Gandolfi, M. Heckenroth, A. Neels, G. Laurenczy and
M. Albrecht, Organometallics, 2009, 28, 5112.
X-Ray crystallography. A single crystal of each compound
was mounted under inert perfluoropolyether at the tip of a
cryoloop and cooled in the cryostream of an Agilent Technologies
OD XCALIBUR 3 CCD diffractometer for 4 or a GEMINI
EOS CCD diffractometer for 5. Data were collected using the
monochromatic MoKa radiation (l = 0.71073). The structures
were solved by direct methods (SIR97) 27 and refined by least-
squares procedures on F2 using SHELXL-97.28 All H atoms
attached to carbon were introduced in idealised positions and
treated as riding on their parent atoms in the calculations. In
compound 4, the BF4 was found to be disordered, and three
orientations of ca. 81, 10 and 9% occupancy were identified.
The geometries of all three orientations were optimised, the
thermal parameters of adjacent equivalent atoms were restrained
to be similar, and only the non-hydrogen atoms of the major
occupancy orientation were refined anisotropically (the others
were refined isotropically). The drawing of the molecules was
realised with the help of ORTEP3.29 Crystal data and refinement
parameters: see footnote y. Selected bond distances and angles are
given in Table 1. CCDC 816175 and 816176
7 For ferrocene-containing NHC ligands, see: B. Bildstein,
M. Malaun, H. Kopacka, K.-H. Ongania and K. Wurst,
J. Organomet. Chem., 1998, 552, 45; H. Seo, H.-J. Park,
B. Y. Kim, J. H. Lee, S. U. Son and Y. K. Chung, Organometallics,
2003, 22, 618; K. S. Coleman, S. Gischig and A. Togni,
Organometallics, 2004, 23, 2479; S. Turberville, S. I. Pascu and
M. L. H. Green, J. Organomet. Chem., 2005, 690, 653;
D. M. Khramov, E. L. Rosen, V. M. Lynch and
C. W. Bielawski, Angew. Chem., Int. Ed., 2008, 47, 2267;
E. L. Rosen, C. D. Varnado, A. G. Tennyson, D. M. Khramov,
J. W. Kamplain, D. H. Sung, P. T. Cresswell, V. M. Lynch and
C. W. Bielawski, Organometallics, 2009, 28, 6695; C. D. Varnado
Jr, V. M. Lynch and C. W. Bielawski, Dalton Trans., 2009, 7253;
U. Siemeling, C. Farber and C. Bruhn, Chem. Commun., 2009, 98.
¨
8 P. D. Beer, P. A. Gale and Z. Chen, Adv. Phys. Org. Chem., 1999,
31, 1; A. Niemz and V. M. Rotello, Acc. Chem. Res., 1998, 32, 44.
9 For selected papers, see: C. Valerio, J.-L. Fillaut, J. Ruiz,
´
J. Guittard, J.-C. Blais and D. Astruc, J. Am. Chem. Soc., 1997,
119, 2588; A. Labande, J. Ruiz and D. Astruc, J. Am. Chem. Soc.,
2002, 124, 1782; D. Astruc, C. Ornelas and J. Ruiz, Acc. Chem.
Res., 2008, 41, 841; D. Astruc, E. Boisselier and C. Ornelas, Chem.
Rev., 2010, 110, 1857.
10 A. M. Allgeier and C. A. Mirkin, Angew. Chem., Int. Ed., 1998,
37, 894; G. Liu, H. He and J. Wang, Adv. Synth. Catal., 2009,
351, 1610.
11 I. M. Lorkovic, R. R. Duff Jr. and M. S. Wrighton, J. Am. Chem.
Soc., 1995, 117, 3617; C. K. A. Gregson, V. C. Gibson, N. J. Long,
E. L. Marshall, P. J. Oxford and A. J. P. White, J. Am. Chem. Soc.,
2006, 128, 7410; M. D. Sanderson, J. W. Kamplain and
C. W. Bielawski, J. Am. Chem. Soc., 2006, 128, 16514;
A. B. Powell, C. W. Bielawski and A. H. Cowley, J. Am. Chem.
Soc., 2009, 131, 18232; A. G. Tennyson, V. M. Lynch and
C. W. Bielawski, J. Am. Chem. Soc., 2010, 132, 9420;
A. B. Powell, C. W. Bielawski and A. H. Cowley, J. Am. Chem.
Soc., 2010, 132, 10184; A. G. Tennyson, R. J. Ono, T. W. Hudnall,
D. M. Khramov, J. A. V. Er, J. W. Kamplain, V. M. Lynch,
J. L. Sessler and C. W. Bielawski, Chem.–Eur. J., 2010, 16, 304.
12 T. B. Higgins and C. A. Mirkin, Inorg. Chim. Acta, 1995, 240, 347;
E. T. Singewald, X. Shi, C. A. Mirkin, S. J. Schofer and
C. L. Stern, Organometallics, 1996, 15, 3062; A. M. Allgeier and
C. A. Mirkin, Organometallics, 1997, 16, 3071; C. S. Slone,
C. A. Mirkin, G. P. A. Yap, I. A. Guzei and A. L. Rheingold,
J. Am. Chem. Soc., 1997, 119, 10743; X. Liu, A. H. Eisenberg,
C. L. Stern and C. A. Mirkin, Inorg. Chem., 2001, 40, 2940;
D. A. Weinberger, T. B. Higgins, C. A. Mirkin, C. L. Stern,
L. M. Liable-Sands and A. L. Rheingold, J. Am. Chem. Soc.,
2001, 123, 2503.
Acknowledgements
The authors thank the CNRS, the Agence Nationale de la
Recherche for a grant to A.L. (ANR-07-JCJC-0041) and the
Institut National Polytechnique de Toulouse for a grant to
R.P. and A.L. (Soutien a la Mobilite Internationale).
´
Notes and references
1 For selected books and recent reviews, see: S. Dıez-Gonzalez,
´ ´
N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient
Synthetic Tools, RSC Publishing, Cambridge, UK, 2011;
F. Glorius, N-Heterocyclic Carbenes in Transition Metal Catalysis,
Springer-Verlag, Heidelberg, Germany, 2007; V. Cesar,
´
S. Bellemin-Laponnaz and L. H. Gade, Chem. Soc. Rev., 2004,
33, 619; F. E. Hahn and M. C. Jahnke, Angew. Chem., Int. Ed.,
2008, 47, 3122; S. Dıez-Gonzalez, N. Marion and S. P. Nolan,
´ ´
Chem. Rev., 2009, 109, 3612; J. C. Y. Lin, R. T. W. Huang,
C. S. Lee, A. Bhattacharyya, W. S. Hwang and I. J. B. Lin,
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 2162–2168 2167