used gem-dibromoolefins as substrates for the synthesis of
1-methyleneindenes through palladium-catalyzed tandem
reactions6 with arylboronic acids.4k,l
carbonylation tandem reaction of 1-(2,2-dibromovinyl)-2-
alkenylbenzene, carbon monoxide, and phenol or alcohol,
which affords 1-methylene-1H-indene-2-carboxylates. Al-
though several routes to the 1-methylene-1H-indene-2-
carboxylates were reported,9gÀi they usually suffered from
multiple steps, low yields, and high temperature. Addi-
tionally, the functional group tolerance is not satisfactory,
which limits its diversity-oriented synthesis.
Our proposed synthetic route is shown in Scheme 1,
which includes a cascade carbonylation and Heckreaction.
1-(2,2-Dibromovinyl)-2-alkenylbenzene 1 could be easily
accessed using a well-known method.4k We hypothesized
that, in this reaction process, an oxidative addition would
occur in the presence of Pd(0) to produce intermediate A.
Subsequently, a nucleophile (phenol or alcohol) and car-
bon monoxide were involved through a palladium-cata-
lyzed carbonylation reaction to afford compound B. Con-
currently the Pd(0) was released, which then underwent
oxidative addition of vinyl bromide B again to furnish
intermediate C. After intramolecular insertion and β-
hydrogen elimination, (Z)-1-methylene-1H-indene-2-car-
boxylate 3would be generated according to the Heck reaction
mechanism.11 In the meantime, the Pd(0) would re-enter
the catalytic cycle. We believed that this hypothesis was
feasible, although several competitive reactions seemed
inevitable.
Indene has been recognized as a privileged fragment, which
can be found in many natural products and drug can-
didates.7 Additionally, applications of indenes in materials
science have been discovered.8 So far, synthetic methodol-
ogies to this carbacycle (including 1-methyleneindene)
have been developed.9,10 Due to its importance, it is still
of high interest and great demand to develop novel
approaches for efficient generation of functionalized in-
denes, especially in the field of chemical biology. Prompted
by the achievement of palladium-catalyzed carbonylation
reactions and the versatility of gem-dihaloolefins, we con-
ceived that the combination of 1-(2,2-dibromovinyl)-
2-alkenylbenzene and carbon monoxide would provide a
novel and efficient pathway for the formation of indene
derivatives. Herein, we report a palladium-catalyzed
(5) (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549. (b) Yuen, J.;
Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 653. (c) Fayol, A.; Fang, Y.-
Q.; Lautens, M. Org. Lett. 2006, 8, 4203. (d) Fang, Y.-Q.; Karisch, R.;
Lautens, M. J. Org. Chem. 2007, 72, 1341. (e) Nagamochi, M.; Fang, Y.-
Q.; Lautens, M. Org. Lett. 2007, 9, 2955. (f) Fang, Y.-Q.; Lautens, M. J.
Org. Chem. 2008, 73, 538. (g) Bryan, C. S.; Lautens, M. Org. Lett. 2008,
10, 4633. (h) Bryan, C. S.; Lautens, M. Org. Lett. 2010, 12, 2754.
(i) Bryan, C. S.; Braunger, J. A.; Lautens, M. Angew. Chem., Int. Ed.
2009, 48, 7064. (j) Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M.
Chem. Commun. 2009, 5236. (k) Chai, D. I.; Lautens, M. J. Org. Chem.
2009, 74, 3054.
(6) For selected examples, see: (a) Montgomery, J. Angew. Chem.,
Int. Ed. 2004, 43, 3890. (b) Negishi, E.; Coperet, C.; Ma, S.; Liou, S. Y.;
Liu, F. Chem. Rev. 1996, 96, 365. (c) Tietze, L. F. Chem. Rev. 1996, 96,
115. (d) Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65.
(e) Miura, T.; Murakami, M. Chem. Commun. 2007, 217. (f) Malacria,
M. Chem. Rev. 1996, 96, 289. (g) Nicolaou, K. C.; Montagnon, T.;
Snyder, S. A. Chem. Commun. 2003, 551. (h) Nicolaou, K. C.; Edmonds,
D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (i) Enders, D.;
Scheme 1. Proposed Route for the Palladium-Catalyzed Car-
bonylative Reaction of 1-(2,2-Dibromovinyl)-2-alkenylben-
zene, Alcohol or Phenol, and Carbon Monoxide
€
Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
(j) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic
Synthesis; Wiley-VCH: Weinheim, Germany, 2006.
(7) For selected examples, see: (a) Clegg, N. J.; Paruthiyil, S.; Leit-
man, D. C.; Scanlan, T. S. J. Med. Chem. 2005, 48, 5989. (b) Lautens, M.;
Marquardt, T. J. Org. Chem. 2004, 69, 4607. (c) Gao, H.; Katzenellen-
bogen, J. A.; Garg, R.; Hansch, C. Chem. Rev. 1999, 99, 723.
(8) For selected examples, see: (a) Yang, J.; Lakshmikantham, M. V.;
Cava, M. P. J. Org. Chem. 2000, 65, 6739. (b) Barbera, J.; Rakitin, O. A.;
Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296.
(c) Akbulut, U.; Khurshid, A.; Hacioglu, B.; Toppare, L. Polymer
1990, 31, 1343.
(9) For selected examples, see: (a) Zhang, D.; Liu, Z.; Yum, E. K.;
Larock, R. C. J. Org. Chem. 2007, 72, 251. (b) Xi, Z.; Guo, R.; Mito, S.;
Yan, H.; Kanno, K.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003,
68, 1252. (c) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K. J. Am.
Chem. Soc. 2006, 128, 202. (d) Romines, K. R.; Lovasz, K. D.; Mizsak,
S. A.; Morris, J. K.; Seest, E. P.; Han, F.; Tulinsky, J.; Judge, T. M.;
Gammill, R. B. J. Org. Chem. 1999, 64, 1733. (e) Zhou, F.; Yang, M.; Lu,
X. Org. Lett. 2009, 11, 1405. (f) Lu, J.-M.; Zhu, Z.-B.; Shi, M. Chem.;
Eur. J. 2009, 15, 963. (g) Kim, K. H.; Kim, S. H.; Park, B. R.; Kim, J. N.
Tetrahedron Lett. 2010, 51, 3368. (h) Watanabe, M.; Shiine, K.; Ideta,
K.; Matsumoto, T.; Thiemann, T. J. Chem. Res. 2008, 669. (i) Haddad,
N.; Abu-Shqara, E. J. Org. Chem. 1994, 59, 6090.
(10) For recent examples, see: (a) Bucher, G.; Mahajan, A. A.;
Schmittel, M. J. Org. Chem. 2008, 73, 8815. (b) Furuta, T.; Asakawa,
T.; Iinuma, M.; Fujii, S.; Tanaka, K.; Kan, T. Chem. Commun. 2006,
3648. (c) Rahman, S. M. A.; Sonoda, M.; Ono, M.; Miki, K.; Tobe, Y.
Org. Lett. 2006, 8, 1197. (d) Basurto, S.; Garcia, S.; Neo, A. G.; Torroba,
T.; Marcos, C. F.; Miguel, D.; Barbera, J.; Ros, M. B.; de la Fuente,
M. R. Chem.;Eur. J. 2005, 11, 5362. (e) Bekele, T.; Christian, C. F.;
Lipton, M. A.; Singleton, D. A. J. Am. Chem. Soc. 2005, 127, 9216.
(f) Schmittel, M.; Vavilala, C. J. Org. Chem. 2005, 70, 4865. (g)
Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. 2003, 42,
5757. (h) Ye, S.; Gao, K.; Zhou, H.; Yang, X.; Wu, J. Chem. Commun.
2009, 5406. (i) Gao, K.; Wu, J. Org. Lett. 2008, 10, 2251. (j) Qiu, G.;
Ding, Q.; Gao, K.; Peng, Y.; Wu, J. ACS Comb. Sci. 2011, 13, 13.
In an initial attempt, 1-(2,2-dibromovinyl)-2-alkenyl-
benzene 1a and n-butyl alcohol 2a were used as model
substrates for reaction development. At the outset, the
reaction was catalyzed by Pd(OAc)2 (5 mol %) and PPh3
(10 mol %) in the presence of K2CO3 (3.0 equiv) as a base
in toluene at 100 °C with a balloon of carbon monoxide
(Table 1, entry 1). However, only a trace amount of product
was observed. To our delight, the expected product 3aa
(50% yield) was formed when KHCO3 was employed as a
replacement of base in the reaction (Table 1, entry 2).
(11) Jutand, A. In The MizorokiÀHeck Reaction; Oestreich, M., Ed.;
John Wiley and Sons: Hoboken, NJ, 2009; p 1.
Org. Lett., Vol. 13, No. 22, 2011
5981