JOURNAL OF
POLYMER SCIENCE
ORIGINAL ARTICLE
white cloudy precipitation. The solid was separated by centrifuge
and washed with 20 mL diethyl ether twice, and then dried in vac-
uum oven overnight to obtain pure white powder product
(0.466 g, 75.0%). 1H-NMR (300 MHz, CD3CN) δ: 7.50–8.05 (br m,
18H). 19F NMR (282 MHz, CD3CN) δ: −134.11, −133.43, −130.74,
−130.67, −129.93, −129.87, −129.22, −129.11, −128.76,
−128.59, −128.44, −127.92, −127.72, −127.10, −126.89. 31P NMR
(121.4 MHz, CD3CN) δ: 22.01. anal. calcd for monomer formula
C28H18BrF12O2PS2 (ignoring end groups): C, 55.01; H, 2.97;
found: C, 57.17; H, 3.47%.
Scott M. Husson for access to the static contact angle equip-
ment, the Department of Chemical and Biomolecular Engineer-
ing for supplying purified water, and Igor Luzinov for access
to the film-casting facility.
REFERENCES AND NOTES
1 B. D. Rabideau, K. N. West, J. H. Davis Jr., Chem. Commun.
2018, 54, 5019.
2 C. A. Cassity, B. Siu, M. Soltani, J. L. McGeehee, K. J. Strickland,
M. Vo, E. A. Salter, A. C. Stenson, A. Wierzbicki, K. N. West,
B. D. Rabideau, J. H. Davis, Phys. Chem. Chem. Phys. 2017, 19,
31560.
Anion Exchange to Prepare PFPÁNTf2
PFPÁBr (0.100 g, 0.16 mmol) solid was dissolved in 20 mL H2O/
MeOH (1:1), and then 10 mL bis(trifluoromethyl)sulfonimide lith-
ium (0.150 g, 0.53 mmol) H2O solution was added dropwise with
vigorous stirring to form a pale yellow flocculent precipitate. The
solid was separated by centrifuge and washed by deionized water
twice. The purified solid was dried in vacuum oven overnight to
yield a pale tan colored solid. 1H-NMR (300 MHz, (CD3)2CO) δ:
7.57–8.05 (br m, 18H). 19F NMR (282 MHz, (CD3)2CO) δ: −134.37,
−133.90, −131.06, −130.76, −130.67, −129.93, −129.89, −129.26,
−129.20, −128.81, −128.68, −127.97, −127.87, −127.14, −127.02,
−126.86, −79.87. 31P NMR (121.4 MHz, (CD3)2CO) δ: 22.86. Anal.
calc’d for monomer formula C30H18F12NO6PS2 (ignoring end
groups): C, 44.40; H, 2.24; N, 1.73%; found: C, 44.36; H,
2.43; N, 1.75%.
3 B. Siu, C. G. Cassity, A. Benchea, T. Hamby, J. Hendrich,
K. J. Strickland, A. Wierzbicki, R. E. Sykora, E. A. Salter,
R. A. O’Brien, K. N. West, J. H. Davis Jr., RSC Adv. 2017, 7, 7623.
4 M. Soltani, B. Siu, E. A. Salter, A. Wierzbicki, K. N. West,
J. H. Davis Jr., Tetrahedron Lett. 2017, 58, 4628.
5 C. G. Cassity, A. Mirjafari, N. Mobarrez, K. J. Strickland,
R. A. O’Brien, J. H. Davis Jr., Chem. Commun. 2013, 49, 7590.
6 W. Wan, X. Yang, R. C. Smith, Chem. Commun. 2017, 53, 252.
7 W. Wan, X. Yang, R. C. Smith, J. Polym. Sci. Part A: Polym.
Chem. 2017, 55, 1984.
8 X. Yang, R. C. Smith, J. Polym. Sci. Part A: Polym. Chem.
2019, 57, 598.
9 X. Yang, Y. Wen, G. Chumanov, R. C. Smith, J. Polym. Sci. Part
A: Polym. Chem. 2017, 55, 1620.
10 M. S. Bedford, X. Yang, K. M. Jolly, R. L. Binnicker,
S. B. Cramer, C. E. Keen, C. J. Mairena, A. P. Patel,
M. T. Rivenbark, Y. Galabura, I. Luzinov, R. C. Smith, Polym.
Chem. 2015, 6, 900.
Alkaline Stability Testing
To a 50 mL round-bottom flask, 20 mg of the polymer dis-
solved in 1 mL DCM was slowly evaporated so that the poly-
mer thin film was coated homogeneously on the bottom of the
flask. The film was soaked in 25 mL NaOH (6 M) over 24 h at
room temperature or 65 ꢀC, and then collected by dissolving
in 0.5 mL CDCl3 to collect phosphorus-31 NMR spectra.
11 M. Bass, A. Berman, A. Singh, O. Konovalov, V. Freger,
J. Phys. Chem. B. 2010, 114, 3784.
12 D. Ho, B. Chu, H. Lee, C. D. Montemagno, Nanotechnology
2004, 15, 1084.
13 R. Guterman, B. M. Berven, T. Chris Corkery, H.-Y. Nie,
M. Idacavage, E. R. Gillies, P. J. Ragogna, J. Polym. Sci. Part A:
Polym. Chem. 2013, 51, 2782.
Contact Angle and Critical Surface Energy Testing
14 S. T. Iacono, S. M. Budy, J. D. Moody, R. C. Smith,
D. W. Smith Jr., Macromolecules 2008, 41, 7490.
Silane-coated glass slides from electron microscopy science
were used as received. Dip-cast samples were prepared using a
machine-controlled linear rate of 50 mm s−1 and allowed to
dry overnight in a 45 ꢀC oven. Samples were placed directly in
capped vials. A Krüss DSA 10 Mk2 Instrument was used with
automatic dosing and a 0.5 mm diameter needle to dispense an
8 μL (average) volume drop. The contact angle was measured
by circle fitting method within 30 s of drop placement in ambi-
ent air with an average temperature of 22.5ꢀC. Test liquids
were prepared with varying concentrations of 2-propanol and
water drawn from a Millipore Milli-Q Instrument with resistivity
measured at 18.2 MΩ cm−1. Isopropanol was used as received
from Beantown Chemicals with purity of 99.8% as recorded on
the manufacturer analysis report. Surface tension of the various
binary mixtures of isopropanol and water were interpolated to
account for actual laboratory temperatures at the time of
measurement.32
15 D. W. Smith Jr., S. Chen, S. M. Kumar, J. Ballato, C. Topping,
H. V. Shah, S. H. Foulger, Adv. Mater. 2002, 14, 1585.
16 H. Ma, J. Wu, P. Herguth, B. Chen, A. K. Y. Jen, Chem. Mater.
2000, 12, 1187.
17 D. W. Smith, D. A. Babb, H. V. Shah, A. Hoeglund,
R. Traiphol, D. Perahia, H. W. Boone, C. Langhoff, M. Radler,
J. Fluor. Chem. 2000, 104, 109.
18 J. Jin, D. W. Smith Jr., C. M. Topping, S. Suresh, S. Chen,
S. H. Foulger, N. Rice, J. Nebo, B. H. Mojazza, Macromolecules
2003, 36, 9000.
19 J. Zhou, Y. Tao, X. Chen, X. Chen, L. Fang, Y. Wang, J. Sun,
Q. Fang, Mater. Chem. Front. 2019, 3, 1280.
20 R. H. Neilson, J. Ji, S. Narayan-Sarathy, D. W. Smith,
D. A. Babb, Phosphorus Sulfur 1999, 144-146, 221.
21 S. Clark Ligon, M. Krawiec, A. Kitaygorodskiy, D. W. Smith,
J. Fluor. Chem. 2003, 123, 139.
22 S. Y. Cho, H. R. Allcock, Chem. Mater. 2007, 19, 6338.
23 G. Baccolini, C. Boga, M. Mazzacurati, F. Sangirardi, Org. Lett.
2006, 8, 1677.
ACKNOWLEDGMENTS
The authors would like to thank the National Science Founda-
tion (CHE-1708844) for their financial support. We thank
24 R. C. Smith, T. Ren, J. D. Protasiewicz, Eur. J. Inorg. Chem.
2002, 2002, 2779.
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2019
5