J. S. Zakhari et al. / Bioorg. Med. Chem. 19 (2011) 6203–6209
6209
efforts have focused on the direct inhibition of the BoNT protease,
Acknowledgments
few have been designed to symptomatically relieve neuromuscular
paralysis by blocking voltage-dependent potassium channels. This
report took an alternative approach by investigating the possibility
of dual action toward cholinergic enhancement at BoNT damaged
synapses. We attempted to mask the Kv channel blocker 3,4-DAP
as a carbamate or amide conjugated pseudo-substrate inhibitor
of AChE thus allowing its directed delivery to afflicted synapses.
The combined effect of the prodrug is to enhance the action poten-
tial for the neuron pre-synaptically as well as increase the lifetime
of ACh post-synaptically. Although simple methylcarbamate con-
jugates to 3,4-DAP were not recognized by AChE as pseudo-sub-
strates, the carbamoyl-linked 4-benzylalcohol-phenol esters 6b
and 6d were. These compounds bound relatively tightly to AChE
This project was supported by a postdoctoral fellowship from
the German Academic Exchange Service (DAAD) to D.G., as well
as The Skaggs Institute for Chemical Biology, and federal funds
from the National Institute of Allergy and Infectious Diseases, Na-
tional Institutes of Health, Department of Health and Human Ser-
vices, under award number AI080671 (K.D.J.).
Supplementary data
Supplementary data associated with this article can be found, in
(low lM) but were sluggish in their turnover by AChE having only
References and notes
10ꢁ4 the kcat of ACh. The esters within these compounds rendered
them unstable to mouse sera.
1. Johnson, E. A.; Bradshaw, M. Toxicon 2001, 39, 1703.
2. Schantz, E. J.; Johnson, E. A. Microbiol. Rev. 1992, 56, 80.
3. Turton, K.; Chaddock, J. A.; Acharya, K. R. Trends Biochem. Sci. 2002, 27, 552.
4. Dong, M.; Yeh, F.; Tepp, W. H.; Dean, C.; Johnson, E. A.; Janz, R.; Chapman, E. R.
Science 2006, 312, 592.
5. Simpson, L. L. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167.
6. Arnon, S. S.; Schechter, R.; Inglesby, T. V.; Henderson, D. A.; Bartlett, J. G.;
Ascher, M. S.; Eitzen, E.; Fine, A. D.; Hauer, J.; Layton, M.; Lillibridge, S.;
Osterholm, M. T.; O’Toole, T.; Parker, G.; Perl, T. M.; Russell, P. K.; Swerdlow, D.
L.; Tonat, K. JAMA 2001, 285, 1059.
7. (a) Dickerson, T. J.; Janda, K. D. ACS Chem. Biol. 2006, 1, 359; (b) Capkova, K.;
Salzameda, N. T.; Janda, K. D. Toxicon 2009, 54, 575.
8. (a) McEvoy, K. M.; Windebank, A. J.; Daube, J. R.; Low, P. A. N. Engl. J. Med. 1989,
321, 1567; (b) Oh, S. J.; Claussen, G. G.; Hatanaka, Y.; Morgan, M. B. Muscle
Nerve 2009, 40, 795.
Alternatively, amide conjugation of 3,4-DAP exemplified by 32,
resulted in compounds that inhibited AChE selectively over BChE
with good potency but did not liberate 3,4-DAP through the in-
tended internal release mechanism. The greater stability of the
amide bond gave 32 a reasonable half-life (2.8 h) for the release
of 3,4-DAP in mouse sera. Although such compounds lack the dual
action originally intended, masking 3,4-DAP for controlled release
holds therapeutic promise. On its own, 3,4-DAP generates muscle
action potential and muscle contraction in vivo, yet its ability to
cross the BBB and produce seizures has questioned the potential
therapeutic relevance of this molecule.27 As such, the design of
prodrugs of 3,4-DAP that limit toxicity would be pertinent as a
means to effectively treat neuro-paralytic disorders including
BoNT induced paralysis.
9. Schwid, S. R.; Petrie, M. D.; McDermott, M. P.; Tierney, D. S.; Mason, D. H.;
Goodman, A. D. Neurology 1997, 48, 817.
10. (a) Davidson, M.; Zemishlany, Z.; Mohs, R. C.; Horvath, T. B.; Powchik, P.; Blass,
J. P.; Davis, K. L. Biol. Psychiatry. 1988, 23, 485; (b) Youdim, M. B.; Buccafusco, J.
J. J. Neural Transm. 2005, 112, 519.
Three classes of prodrugs were designed, synthesized, and eval-
uated in vitro with the goal of elucidating structures that act as
pseudosubstrates for AChE and release 3,4-DAP at affected neu-
rons, via enzyme mediated catalysis. Localized 3,4-DAP would act
to increase vesicular ACh release at intoxicated junctions, allowing
the recovery of neuromuscular transmission while reduced acetyl-
cholinesterase activity via AChE inhibition will allow the limited
ACh present to persist. We anticipate that continual 3,4-DAP in
circulation, released slowly overtime, would nullify the previous
inefficacies of concentrated, repeated dosing, as well as BBB
penetration.
Of the 19 compounds synthesized, two demonstrated inhibition
and selectivity between enzyme classes, as well as a drug-release
profile necessary for half-life determination in mouse sera (6b
and 6d). Unfortunately, further testing revealed that these two
class I prodrugs were unstable in sera limiting their usefulness
in vivo. Prodrug 32 on the other hand, demonstrated inhibition
and selectivity for AChE, but did not act as a pseudosubstrate for
the enzyme. Regardless, 32 was tested for half-life in sera to deter-
mine if unidentified esterases/peptidases present could degrade
the prodrug while in circulation, ultimately releasing 3,4-DAP over
time. Prodrug 32 in fact had the best half-life of 2.76 h. The stabil-
ity of 32 in sera may possibly be due to its amide bond, which
would not be readily cleaved within the active site of AChE, but
may be hydrolyzed by non-specific peptidases in sera. Modeling
studies may help to clarify the chemical properties necessary for
binding and release via AChE. In sum, 32 could be used as a lead
structure to elucidate more potent inhibitors. However, future
in vivo experiments will be necessary to validate prodrug 32 as
an effective treatment for BoNT intoxication and other neuromus-
cular disorders.
11. (a) Flet, L.; Polard, E.; Guillard, O.; Leray, E.; Allain, H.; Javaudin, L.; Edan, G. J.
Neurol. 2010, 257, 937; (b) Ionno, M.; Moyer, M.; Pollarine, J.; van Lunteren, E.
Respir. Physiol. Neurobiol. 2008, 160, 45; (c) Smith, D. T.; Shi, R.; Borgens, R. B.;
McBride, J. M.; Jackson, K.; Byrn, S. R. Eur. J. Med. Chem. 2005, 40, 908.
12. (a) Adler, M.; Capacio, B.; Deshpande, S. S. Toxicon 2000, 38, 1381; (b) Adler, M.;
Macdonald, D. A.; Sellin, L. C.; Parker, G. W. Toxicon 1996, 34, 237.
13. Caballero, N. A.; Melendez, F. J.; Nino, A.; Munoz-Caro, C. J. Mol. Model. 2007, 13,
579.
14. Mayorov, A. V.; Willis, B.; Di Mola, A.; Adler, D.; Borgia, J.; Jackson, O.; Wang, J.;
Luo, Y.; Tang, L.; Knapp, R. J.; Natarajan, C.; Goodnough, M. C.; Zilberberg, N.;
Simpson, L. L.; Janda, K. D. ACS Chem. Biol. 2010, 5, 1183.
15. Chiou, C. Y. Arch. Int. Pharmacodyn. Ther. 1973, 201, 170.
16. Judge, S. I.; Bever, C. T., Jr. Pharmacol. Ther. 2006, 111, 224.
17. Henze, T. Fortschr Neurol Psychiatr 1996, 64, 110.
18. (a) Verheijen, J. C.; Wiig, K. A.; Du, S.; Connors, S. L.; Martin, A. N.; Ferreira, J. P.;
Slepnev, V. I.; Kochendorfer, U. Bioorg. Med. Chem. Lett. 2009, 19, 3243; (b)
Zheng, H.; Youdim, M. B.; Fridkin, M. J. Med. Chem. 2009, 52, 4095; (c) Darvesh,
S.; Darvesh, K. V.; McDonald, R. S.; Mataija, D.; Walsh, R.; Mothana, S.;
Lockridge, O.; Martin, E. J. Med. Chem. 2008, 51, 4200; (d) Toda, N.; Tago, K.;
Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.; Koyama, K.; Naruto, S.; Abe, K.;
Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T.; Kogen, H. Bioorg. Med.
Chem. 2003, 11, 1935.
19. Bar-On, P.; Millard, C. B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J. L.; Silman, I.
Biochemistry 2002, 41, 3555.
20. Colquhoun, D. Neuromuscular Transmission: Basic and Applied Aspects; Elsevier:
New York, 1990. Chapter 7; (b) Shen, T.; Tai, K.; Henchman, R. H.; McCammon,
J. A. Acc Chem Res. 2002, 35, 332.
21. Smart, J. L.; McCammon, J. A. Biophys. J. 1998, 75, 1679.
22. Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Feather-Stone, R. M. Biochem.
Pharmacol. 1961, 7, 88.
23. Holt, J.; Andreassen, T.; Bakke, J. M.; Fiksdahl, A. J. Heterocycl. Chem. 2005, 42,
259.
24. Bakke, J. M.; Gautun, H. S. H.; Svensen, H. J. Heterocycl. Chem. 2003, 40, 585.
25. Bakke, J. M.; Riha, J. J. Heterocycl. Chem. 1999, 36, 1143.
26. Willis, B.; Eubanks, L. M.; Dickerson, T. J.; Janda, K. D. Angew. Chem., Int. Ed.
2008, 47, 8360.
27. (a) Uchiyama, T.; Lemeignan, M.; Lechat, P. Jpn. J. Pharmacol. 1985, 38, 329; (b)
Plewa, M. C.; Martin, T. G.; Menegazzi, J. J.; Seaberg, D. C.; Wolfson, A. B. Ann.
Emerg. Med. 1994, 23, 499; (c) Damsma, G.; Biessels, P. T.; Westerink, B. H.; De
Vries, J. B.; Horn, A. S. Eur. J. Pharmacol. 1988, 145, 15.