2258
S. Guo et al.
LETTER
2008, 37, 1140. (d) Cowen, B. J.; Miller, S. J. Chem. Soc.
Rev. 2009, 38, 3102. (e) Marinetti, A.; Voituriez, A. Synlett
2010, 174.
CO2Et
Ph3P
CO2Et
CO2Et
•
PPh3
PPh3
(6) For relevant examples, see: (a) Zhang, C.; Lu, X. J. Org.
Chem. 1995, 60, 2906. (b) Xu, S.; Zhou, L.; Ma, R.; Song,
H.; He, Z. Chem. Eur. J. 2009, 15, 8698. (c) Henry, C. E.;
Kwon, O. Org. Lett. 2007, 9, 3069. (d) Dudding, T.; Kwon,
O.; Mercier, E. Org. Lett. 2006, 8, 3643. (e) Xia, Y.; Liang,
Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.;
Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470. (f) Wallace,
D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72,
1051. (g) Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006, 62,
457. (h) Sampath, M.; Loh, T.-P. Chem. Commun. 2009,
1568.
2
A
B
CN
Michael addition–
intramolecular cyclization
CN
1a
3a
N
Me
O
PPh3
EtO2C
C
(7) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
(8) (a) Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463. (b) Wang,
J.-C.; Krische, M. J. Angew. Chem. Int. Ed. 2003, 42, 5855;
Angew. Chem. 2003, 115, 6035. (c) Pham, T. Q.; Pyne, S.
G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70,
6369.
Scheme 3
molecular diversity. Thus the present method has the po-
tential to be applied in medicinal and synthetic chemistry.
(9) Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q.; Liu, W.;
Zhang, J.-K.; Zhao, G. Angew. Chem. Int. Ed. 2010, 49,
4467; Angew. Chem. 2010, 122, 4569.
Supporting Information for this article is available online at
(10) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130,
5660.
(11) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129,
10988.
(12) Wilson, J. E.; Fu, G. C. Angew. Chem. Int. Ed. 2006, 45,
1426; Angew. Chem. 2006, 118, 1454.
Acknowledgment
We thank the National Natural Science Foundation of China
(20872087, 21002061, 20902057), the State Key Laboratory of Ap-
plied Organic Chemistry, Lanzhou University, Leading Academic
Discipline Project of Shanghai Municipal Education Commission
(No: J50101), and the Graduate Innovation Fund of Shanghai Uni-
versity for financial support.
(13) (a) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003,
125, 4716. (b) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc.
2005, 127, 12234. (c) Tran, Y. S.; Kwon, O. Org. Lett. 2005,
7, 4289. (d) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007,
129, 12632. (e) Wang, T.; Ye, S. Org. Lett. 2010, 12, 4168.
(14) (a) Li, J.; Liu, Y. J.; Li, C. J.; Jia, X. S. Adv. Synth. Catal.
2011, 353, 913. (b) Li, J.; Li, S. Y.; Li, C. J.; Liu, Y. J.; Jia,
X. S. Adv. Synth. Catal. 2010, 352, 336. (c) Zhao, Y. N.; Li,
J.; Li, C. J.; Yin, K.; Ye, D. Y.; Jia, X. S. Green Chem. 2010,
12, 1370.
(15) CCDC 763015 for compound 3b contains the supplementary
crystallographic data for this paper. These data can be
obtained free of charge from the Cambridge Crystal-
data_request/cif.
References and Notes
(1) (a) Akai, S.; Tsujino, T.; Akiyamna, E.; Tanimoto, K.; Naka,
T.; Kita, Y. J. Org. Chem. 2004, 69, 2478. (b) Marti, C.;
Carreira, E. M. Eur. J. Org. Chem. 2003, 2209. (c) Zhang,
T. Y.; Zhang, H. Tetrahedron Lett. 2002, 43, 193.
(2) (a) Gallagher, G.; Lavanchi, P. G.; Wilson, J. W.; Hieble, J.;
Demmarinis, R. M. J. Med. Chem. 1985, 28, 1533.
(b) Nagata, R.; Tokunaga, T.; Hume, W.; Umezone, T.;
Okazaki, U.; Ueki, Y.; Kumagai, K.; Hourai, S.; Nagamine,
J.; Seki, H.; Taiji, M.; Noguchi, H. J. Med. Chem. 2001, 44,
4641.
(3) (a) Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36,
127. (b) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int.
Ed. 2007, 46, 8748; Angew. Chem. 2007, 119, 8902.
(c) TrostB, M.; Jiang, C. Synthesis 2006, 369. (d) Lin, H.;
Danishefsky, S. J. Angew. Chem. Int. Ed. 2003, 42, 36;
Angew. Chem. 2003, 115, 38. (e) Zhou, F.; Liu, Y. L.; Zhou,
J. Adv. Synth. Catal. 2010, 352, 1381.
(16) Typical Experimental Procedure
Ph3P (10%) was added to a solution of alkene 1 (0.5 mmol)
and allenoate 2 (0.6 mmol) in 5 mL toluene at r.t. in the air.
The stirred mixture was allowed to react for given the time
in Table 2, and the process was monitored using TLC
detection. After completion of present reaction, the reaction
mixture was concentrated under vacuum. The residue was
purified by column chromatography on silica gel [silica:
200–300 mesh; eluant: PE–EtOAc] to afford the desired
product 3.
(4) For selected examples of total syntheses, see: (a) Greshock,
T. J.; Grubbs, A. W.; Tsukamoto, S.; Williams, R. M.
Angew. Chem. Int. Ed. 2007, 46, 2262; Angew. Chem. 2007,
119, 2312. (b) Grubbs, A. W.; Artman, G. D. I. I. I.;
Tsukamoto, S.; Williams, R. M. Angew. Chem. Int. Ed.
2007, 46, 2257; Angew. Chem. 2007, 119, 2307.
Selected Spectroscopic Data of Product 3
Compound 3a: White solid, mp 140.3–142.1 °C
(uncorrected). 1H NMR (500 MHz, CDCl3): d = 7.48–7.44
(m, 2 H), 7.16 (t, J = 7.5 Hz, 2 H), 6.97 (d, J = 8.0 Hz, 1 H),
4.02–3.91 (m, 2 H), 3.80 (dd, J1 = 17.5 Hz, J2 = 2.0 Hz, 1 H),
3.48 (dd, J1 = 17.5 Hz, J2 = 3.0 Hz, 1 H), 3.30 (s, 3 H), 0.99
(t, J = 7.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): d = 171.7,
161.1, 144.6, 142.7, 136.5, 131.4, 125.5, 123.8, 123.5,
114.3, 112.9, 109.3, 64.8, 61.4, 43.5, 45.1, 27.1, 13.8. IR
(KBr): n = 3066, 2940, 2255, 1712, 1613, 1475. MS (ESI):
m/z = 322 [M + H+], 344 [M + Na+], 360 [M + K+]. HRMS
(MALDI): m/z calcd for C18H16N3O3+ [M + H]+: 322.1193;
found: 322.1186.
(c) Greshock, T. J.; Grubbs, A. W.; Jiao, P.; Wicklow, D. T.;
Gloer, J. B.; Williams, R. M. Angew. Chem. Int. Ed. 2008,
47, 3573; Angew. Chem. 2008, 120, 3629. (d) Trost, B. M.;
Cramer, N.; Bernsmann, H. J. Am. Chem. Soc. 2007, 129,
3086.
(5) For reviews on phosphine-catalyzed reactions, see: (a) Lu,
X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346,
1035. (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev.
Synlett 2011, No. 15, 2256–2258 © Thieme Stuttgart · New York