1110
I. Medrußt et al. / Tetrahedron Letters 54 (2013) 1107–1111
Table 2
References and notes
Relative intensity peaks of complexes of macrocycles 6a–c and alkali metal cations
(samples of equimolecular amounts of 1.5 ꢂ 10ꢁ4 M solution of
6 dissolved in
1. (a) Mietzsch, F. Angew. Chem. 1954, 66, 363; (b) Ionescu, M.; Mantsch, H. Adv.
Heterocycl. Chem. 1967, 8, 83; (c) Bodea, C.; Silberg, I. Adv. Heterocycl. Chem.
1968, 9, 321; (d) Eckstein, Z.; Urbanski, T. Adv. Heterocycl. Chem. 1978, 23, 1; (e)
Albery, W. J.; Foulds, A. W.; Hall, K. J.; Hillman, A. R.; Edgell, R. G.; Orchard, A. F.
Nature 1979, 282, 793; (f) Silberg, I. A.; Cormos, G.; Oniciu, D. C. Adv. Heterocycl.
Chem. 2006, 90, 205.
2. Tinker, L. A.; Bard, A. J. J. Am. Chem. Soc. 1979, 101, 2316.
3. (a) Forrest, I.; Forrest, F. Biochem. Biophys. Acta 1958, 29, 441; (b) Ida, Y. Bull.
Chem. Soc. Jpn. 1971, 44, 663.
acetonitrile and 1:1:1:1:1 mixture of LiCl, NaSCN, KSCN, Rb2CO3, and Cs2CO3, each salt
1.5 ꢂ 10ꢁ4 M solution dissolved in acetonitrile).
6a (%)
6b (%)
6c (%)
[M+Li]+
[M+Na]+
[M+K]+
100
78
78
—
—
11
37
100
60
—
—
21
6
59
100
—
2
4
[M+Rb]+
[M+Cs]+
[2M+K]+
4. (a) Bell, J. D.; Blount, J. F.; Briscoe, O. V.; Freeman, H. C. Chem. Commun. 1968,
1656; (b) Pan, D.; Philips, L. J. Phys. Chem. A 1999, 103, 4737.
5. (a) Kim, S. K.; Lee, J.-H.; Hwang, D.-H. Synth. Met. 2005, 152, 201; (b) Cho, M. J.;
Lee, S. K.; Choi, D. H.; Dalton, L. R. Thin Solid Films 2006, 515, 2303; (c) Liu, Y.; Li,
J.; Cao, H.; Qu, B.; Chen, Z.; Gong, Q.; Xu, S.; Cao, S. Polym. Adv. Technol. 2006, 17,
468; (d) Lapkwoski, M.; Plewa, S.; Stolarczyk, A.; Doskocz, J.; Soloducho, J.;
Cabaj, J.; Bartoszek, M.; Sulkowski, W. W. Electrochim. Acta 2008, 53, 2545.
6. (a) Tierny, M. T.; Sykora, M.; Khan, S. I.; Grinstaff, M. W. J. Phys. Chem. B 2000,
104, 7574; (b) Tierny, M.; Grinstaff, M. W. J. Org. Chem. 2000, 65, 5355; (c)
Nakadan, N.; Imabayashi, S.-I.; Watanabe, M. Langmuir 2004, 20, 8786; (d)
Wagner, C.; Wagenknecht, H.-A. Chem. Eur. J. 1871, 2005, 22.
7. (a) Müller, T. J. J. Tetrahedron Lett. 1999, 40, 6563; (b) Krämer, C. S.; Zeitler, K.;
Müller, T. J. J. Org. Lett. 2000, 2, 3723; (c) Krämer, C. S.; Müller, T. J. J. Eur. J. Org.
Chem. 2003, 3534.
8. Franz, A. W.; Rominger, F.; Müller, T. J. J. J. Org. Chem. 2008, 73, 1795.
9. (a) Bucci, N.; Müller, T. J. J. Tetrahedron Lett. 2006, 47, 8323; (b) Bucci, N.;
Müller, T. J. J. Tetrahedron Lett. 2006, 47, 8329.
were performed with solutions containing equimolecular amounts
of multicomponent mixtures formed by the macrocyclic host and
the five guest cations as well as samples containing the macrocycle
and a single guest cation. Thus, the mass spectra of the solutions of
equimolecular amounts of macrocycle 6 and LiCl, NaSCN, KSCN,
Rb2CO3, and Cs2CO3 showed the highest preference to formation
of [6a+Li]+, [6b+Na]+, and [6c+K]+ complexes, respectively (Table 2),
according to the macrocycle cavity size. Macrocycles 6a and 6b,
with four and five ethyleneoxy units, also exhibited a peak corre-
sponding to sandwich20 [2M+K]+ complexes, besides the 1:1 com-
plex with K+ (Table 2). There were no traces of the [M+Rb+] or
[M+Cs+] peaks for macrocycles 6 even in the samples containing
only the macrocycle and rubidium or cesium carbonate, except
for 6c which exhibited a peak corresponding to the complex with
Cs+ (Table 2). However, the experiments conducted with lithium
chloride revealed some interesting aspects. The ES-HRMS spectra
of the samples of macrocycles 6 and LiCl showed no affinity for
the lithium cation, while in the samples of 6 with equimolecular
amounts of the alkali metal salts, the corresponding [M+Li]+ peak
was present (Table 2). This noticeable change in complexation abil-
ity can be explained by the change in pH to slightly basic,21 since in
the samples containing all alkali metal salts the corresponding car-
bonates (for Rb and Cs) or thiocyanates (for Na and K) were used
and chloride for Li.
10. Hauck, M.; Schönhaber, J.; Zucchero, A. J.; Hardcastle, K. I.; Müller, T. J. J.; Bunz,
U. H. F. J. Org. Chem. 2007, 72, 6714.
11. Sailer, M.; Franz, A. W.; Müller, T. J. J. Chem. Eur. J. 2008, 14, 2602.
12. (a) Franz, A. W.; Zhou, Z.; Turdean, R.; Wagener, A.; Sarkar, B.; Hartmann, M.;
Ernst, S.; Thiel, W. R.; Müller, T. J. J. Eur. J. Org. Chem. 2009, 3895; (b) Turdean,
R.; Bogdan, E.; Terec, A.; Petran, A.; Vlase, L.; Turcu, I.; Grosu, I. Cent. Eur. J.
Chem. 2009, 7, 111; (c) Franz, A. W.; Stoycheva, S.; Himmelhaus, M.; Müller, T.
J. J. Beilstein J. Org. Chem. 2010, 6, 1.
13. (a) Petry, C.; Lang, M.; Staab, H. A.; Bauer, H. Angew. Chem., Int. Ed. Engl 1993,
32, 1711; (b) Bauer, H.; Stier, F.; Petry, C.; Knorr, A.; Stadler, C.; Staab, H. A. Eur.
J. Org. Chem. 2001, 3255; (c) Memminger, K.; Oeser, T.; Müller, T. J. J. Org. Lett.
2008, 10, 2797.
14. Sailer, M.; Nonnenmacher, M.; Oeser, T.; Müller, T. J. J. Eur. J. Org. Chem. 2006,
423.
15. Krämer, C. S.; Zimmerman, T. J.; Sailer, M.; Müller, T. J. J. Synthesis 2002, 1163.
16. (a) Krämer, C. S.; Zeitler, K.; Müller, T. J. J. Tetrahedron Lett. 2001, 42, 8619; (b)
Sailer, M.; Gropeanu, R. A.; Müller, T. J. J. J. Org. Chem. 2003, 68, 7509.
17. General procedure for the synthesis of macrocycles 6a–c: A solution of 1 mmol of
diiodurated tetraethylene glycol (for 6a), ditosylated pentaethylene glycol (for
6b), and ditosylated hexaethylene glycol (for 6c) in dry acetonitrile was added
over 3 days to a solution of diphenol 5 (1 mmol) and Cs2CO3 (5 mmol) in dry
acetonitrile at reflux. The stirring under reflux was continued for additional
4 days. After cooling to room temperature, water (100 ml) and
dichloromethane (50 ml) were added to the reaction mixture, the organic
layer was separated and the aqueous layer was extracted with
dichloromethane (2 ꢂ 50 ml). The combined organic layers were washed
with brine, dried with sodium sulfate and the solvents were removed in
vacuum. The residue was adsorbed on silica gel and was purified by column
chromatography.
In summary, we report here the synthesis, structural analysis,
and complexation ability of new phenothiazine macrocycles. To
the best of our knowledge these are the first examples of crown
ethers embedding phenothiazine units. Macrocycles 6 exhibit an
electrochemical behavior similar to N-alkyl phenothiazine. The
ES-HRMS experiments performed in order to determine the affinity
of 6 for alkali cations, revealed a high affinity of 6a for Li+, 6b for
Na+, and 6c for K+, respectively. In the case of 6b, the solid state
molecular structure investigations showed numerous intra- and
29-Ethyl-7,10,13,16,19-pentaoxa-37-thia-29-aza-hexacyclo
[23.7.5.1.2,61.20,240.28,360.30,38]-nonatriconta-1(32),2,4,6(33),
20(34),21,23,25,27,30,35,37-dodecaene (6a)
intermolecular C–Hꢀ ꢀ ꢀp and C–Hꢀ ꢀ ꢀ
p interactions.
Yield 32% (182 mg), light green solid, mp = 195–196 °C; Rf = 0.59 (pentane:
ethyl acetate = 3:1); ES-HRMS: calcd for C34H36NO5S [M+H]+: 570.2303, found:
570.2309. 1H NMR (300 MHz, CD2Cl2) d ppm: 1.49 (3H, t, J = 6.9 Hz), 3.68 (8H,
s), 3.81 (4H, t, J = 6.6 Hz), 4.01 (2H, q, J = 6.9 Hz), 4.24 (4H, t, J = 6.3 Hz), 6.83
(2H, dd, J = 8.1; J0 = 2.4 Hz), 7.03 (2H, d, J = 8.1 Hz), 7.16–7.21 (4H, overlapped
peaks), 7.29 (2H, t, J = 7.8 Hz), 7.42 (2H, dd, J = 8.4, 1.8 Hz), 7.53 (2H, d,
J = 1.8 Hz).13C NMR (75 MHz, CD2Cl2) d ppm: 13.44 (CH3), 41.67 (N–CH2),
67.65, 70.13, 71.10, 71.19 (CH2), 112.69, 115.95, 116.05, 118.75, 126.24,
127.51, 130.11 (CH; aromatic), 125.74, 136.65, 141.85, 145.96, 159.72
Acknowledgements
This work was supported by CNCS–UEFISCDI (projects PN-II-
IDEI_2278/2008 and PNII-ID-PCCE-2011-2-0027). I. Medrußt thanks
for
a Ph.D. scholarship, project co-financed by the Sectorial
(Cquaternary
;
aromatic). ES(+)-HRMS: m/z = 570.23 [M+H]+; 576.24 [M+Li]+;
operational program for human resources development 2007–
2013 Priority Axis 1. ‘Education and training in support for growth
and development of
intervention 1.5: Doctoral and post-doctoral programs in support
of research; Contract No. POSDRU/88/1.5/S/60185–‘Innovative
Doctoral Studies in a Knowledge Based Society’, Babesß-Bolyai
University, Cluj-Napoca, Romania.
592.21 [M+Na]+; 608.19 [M+K]+; 1139.46 [2M+H]+; 1177.41 [2M+K]+.
32-Ethyl-7,10,13,16,19,22-hexaoxa-40-thia-32-aza-hexacyclo
[26.7.5.1.2,61.23,270.31,390.33,41]-dotetraconta-1(35),2,4,6(36),
23(37),24,26,28,30,33,38,41-dodecaene (6b)
a knowledge based society’ Key area of
Yield 52% (319 mg), light green solid, mp = 114–115 °C; Rf = 0.51
(pentane:ethyl acetate = 1:2); ES-HRMS: calcd for
C
36H40NO6S [M+H]+:
614.2573, found: 614.2571. 1H NMR (300 MHz, CDCl3) d ppm: 1.51 (3H, t,
J = 7.0 Hz), 3.70–3.78 (12H, overlapped peaks), 3.86 (4H, t, J = 5.8 Hz), 4.02 (2H,
q, J = 7.0 Hz), 4.24 (4H, t, J = 5.8 Hz), 6.87 (dd, 2H, J = 8.0, 1.8 Hz), 6.98 (2H, d,
J = 8.4 Hz), 7.14–7.19 (4H, overlapped peaks), 7.32 (t, 2H, J = 8.0 Hz), 7.41 (4H,
dd, J = 7.4 Hz, 2.0 Hz), 7.48 (2H, d, J = 2.0 Hz). 13C NMR (75 MHz, DMSO-d6) d
ppm: 13.16 (CH3), 41.65 (N–CH2), 67.48, 69.72, 70.78, 70.92, 76.67 (CH2),
112.71, 114.87, 115.38, 118.84, 125.98, 128.45, 129.77 (CH, aromatic), 124.82,
Supplementary data
Supplementary data associated with this article can be
133.56, 135.83, 141.34, 159.26 (Cquaternary
; aromatic). ES(+)-HRMS: m/
z = 614.26 [M+H]+; 620.36 [M+Li]+; 636.24 [M+Na]+; 652.21 [M+K]+; 1227.51
[2M+H]+; 1265.46 [2M+K]+.