4792
S. Kumar, D. P. Arya / Bioorg. Med. Chem. Lett. 21 (2011) 4788–4792
References and notes
120
100
80
60
40
20
0
1. Jones, K. A.; Peterlin, B. M. Annu. Rev. Biochem. 1994, 63, 717.
2. Rana, T. M.; Jeang, K. T. Arch. Biochem. Biophys. 1999, 365, 175.
3. Feng, S.; Holland, E. C. Nature 1988, 334, 165.
4. Puglisi, J.; Tan, R.; Calnan, B.; Frankel, A.; Williamson, J. R. Science 1992, 257, 76.
5. Bailly, C.; Colson, P.; Houssier, C.; Hamy, F. Nucleic Acids Res. 1996, 24, 1460.
6. Ratmeyer, L. S.; Vinayak, R.; Zon, G.; Wilson, W. D. J. Med. Chem. 1992, 35, 966.
7. Dassonneville, L.; Hamy, F.; Colson, P.; Houssier, C.; Bailly, C. Nucleic Acids Res.
1997, 25, 4487.
8. Lind, K. E.; Du, Z.; Fujinaga, K.; Peterlin, B. M.; James, T. L. Chem. Biol. 2002, 9,
185.
9. Tao, J.; Frankel, A. D. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 2723.
10. Hwang, S.; Tamilarasu, N.; Ryan, K.; Huq, I.; Richter, S.; Still, W. C.; Rana, T. M.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12997.
11. Athanassiou, Z.; Patora, K.; Dias, R. L. A.; Moehle, K.; Robinson, J. A.; Varani, G.
Biochemistry (N. Y.) 2007, 46, 741.
12. Mei, H.; Mack, D. P.; Galan, A. A.; Halim, N. S.; Heldsinger, A.; Loo, J. A.;
Moreland, D. W.; Sannes-Lowery, K. A.; Sharmeen, L.; Truong, H. N.; Czarnik, A.
W. Bioorg. Med. Chem. 1997, 5, 1173.
13. Thomas, J. R.; Hergenrother, P. J. Chem. Rev. 2008, 108, 1171.
14. Wang, H.; Tor, Y. Bioorg. Med. Chem. Lett. 1997, 7, 1951.
15. Michael, K.; Wang, H.; Tor, Y. Bioorg. Med. Chem. 1999, 7, 1361.
16. Tok, J. B.; Fenker, J. Bioorg. Med. Chem. Lett. 2001, 11, 2987.
17. Arya, D. P.; Coffee, R. L., Jr.; Xue, L. Bioorg. Med. Chem. Lett. 2004, 14, 4643.
18. Kumar, S.; Xue, L.; Arya, D. P. J. Am. Chem. Soc. 2011, 133, 7361.
19. Willis, B.; Arya, D. P. Bioorg. Med. Chem. Lett. 2009, 19, 4974.
20. Xi, H.; Gray, D.; Kumar, S.; Arya, D. P. FEBS Lett. 2009, 583, 2269.
21. Shaw, N. N.; Arya, D. P. Biochimie 2008, 90, 1026.
O
O
-CH2CH2-
O
O
-O-
-CH2-
7
7
7
8
8
10
10
16
20
Linker Length
Figure 4. Bar graph representing the effect of linker length and structure of
neomycin dimers on the binding affinity towards HIV-1 TAR RNA, determined using
ethidium bromide displacement experiments.
22. Shaw, N. N.; Xi, H.; Arya, D. P. Bioorg. Med. Chem. Lett. 2008, 18, 4142.
23. Willis, B.; Arya, D. P. Curr. Org. Chem. 2006, 10, 663.
24. Willis, B.; Arya, D. P. Adv. Carbohydr. Chem. Biochem. 2006, 60, 251.
25. Arya, D. P. Top. Curr. Chem. 2005, 253, 149.
26. Xue, L.; Charles, I.; Arya, D. P. Chem. Commun. 2002, 1, 70.
27. Willis, B.; Arya, D. P. Biochemistry 2010, 49, 452.
Ethidium bromide displacement titrations: To further investigate
the binding between HIV TAR RNA and neomycin dimers, ethidium
bromide displacement experiments44,45 were used (Fig. 3) and the
results are summarized in Figure 4. The binding affinity of neomy-
cin dimers is proportional to the amount of ethidium bromide
displaced from HIV TAR RNA and reflected in the IC50 (the concen-
tration of ligand required to displace 50% ethidium bromide from
HIV TAR RNA) values (Fig. 3).
Ethidium bromide displacement experiments indicate that in
general, neomycin dimers with shorter linker lengths have higher
affinity than neomycin dimers with longer linker towards HIV TAR
RNA. The IC50 values for neomycin dimers fall within a range of
36–99 nM (see Fig. 4), which is in the range of Tat–TAR binding
(IC50 = 56 nm). In comparison to neomycin dimers, neomycin shows
very low affinity towards HIV TAR RNA. The IC50 value of neomycin
towards HIV TAR RNA is 417 115 nM. This trend is similar to what
is observed with UV thermal denaturation experiments.
28. Ranjan, N.; Andreasen, K. F.; Kumar, S.; Hyde-Volpe, D.; Arya, D. P. Biochemistry
(N. Y.) 2010, 49, 9891.
29. Tok, J. B.; Cho, J.; Rando, R. R. Biochemistry 1999, 38, 199.
30. Mei, H.; Galan, A. A.; Halim, N. S.; Mack, D. P.; Moreland, D. W.; Sanders, K. B.;
Truong, H. N.; Czarnik, A. W. Bioorg. Med. Chem. Lett. 1995, 5, 2755.
31. Zapp, M. L.; Stern, S.; Green, M. R. Cell 1993, 74, 969.
32. Bernacchi, S.; Freisz, S.; Maechling, C.; Spiess, B.; Marquet, R.; Dumas, P.;
Ennifar, E. Nucleic Acids Res. 2007, 35, 7128.
33. von Ahsen, U.; Davies, J.; Schroeder, R. J. Mol. Biol. 1992, 226, 935.
34. Mikkelsen, N. E.; Brannvall, M.; Virtanen, A.; Kirsebom, L. A. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 6155.
35. Earnshaw, D. J.; Gait, M. J. Nucleic Acids Res. 1998, 26, 5551.
36. Hermann, T.; Westhof, E. Biopolymers 1998, 48, 155.
37. Sannes-Lowery, K. A.; Mei, H.; Loo, J. A. In. J. Mass Spectrometry 1999, 193, 115.
38. Wang, S.; Huber, P. W.; Cui, M.; Czarnik, A. W.; Mei, H. Biochemistry (N. Y.)
1998, 37, 5549.
39. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angewandte Chemie International Edition
2001, 40, 2004.
40. Long, K. S.; Crothers, D. M. Biochemistry (N. Y.) 1995, 34, 8885.
41. Loret, E. P.; Georgel, P.; Johnson, W. C.; Ho, P. S. Proc. Natl. Acad. Sci. U.S.A. 1992,
89, 9734.
42. Frankel, A. D. Curr. Opin. Genet. Dev. 1992, 2, 293.
43. Wang, S.; Huber, P. W.; Cui, M.; Czarnik, A. W.; Mei, H. Y. Biochemistry (N. Y.)
1998, 37, 5549.
In conclusion, an efficient synthesis of neomycin dimers46 using
click chemistry has been performed. Biophysical results from ethi-
dium bromide displacement and UV thermal denaturation experi-
ments show that the two neomycin binding sites on HIV TAR RNA
are very close to each other as seen by the higher affinity of neomy-
cin dimers with shorter linker length towards HIV TAR RNA. Fur-
ther studies on the effect of these dimers on protein binding and
HIV inhibition are ongoing and will be reported in due course.
44. Luedtke, N. W.; Hwang, J. S.; Glazer, E. C.; Gut, D.; Kol, M.; Tor, Y. ChemBioChem
2002, 3, 766.
45. Boger, D. L.; Fink, B. E.; Brunette, S. R.; Tse, W. C.; Hedrick, M. P. J. Am. Chem. Soc.
2001, 123, 5878.
46. General procedure for synthesis of N-Boc protected neomycin dimers. To a solution
of 500-azide-neomycin
B (62 mg, 0.05 mmol) in dry toluene (5 mL), diyne
(0.025 mmol, 0.50 equiv) was added followed by the addition of CuI (4.76 mg,
0.025 mmol) and DIPEA (6.46 mg, 0.05 mmol). The reaction mixture stirred at
rt for 18 h in the atmosphere of argon. The volatiles were removed under
vacuum. Purification by flash column chromatography (0–10% ethanol in
CH2Cl2) afforded the desired product as a white solid (80–89%).
Acknowledgment
This work was supported by National Institute of Health Grant
(R15CA125724 to D.P.A.)
Deprotection of N-Boc protected neomycin dimers. To a solution of neomycin
dimer (30 mg) in dioxane (3 mL), 4 M HCl/dioxane (1 mL) was added and the
reaction started at room temperature. A white precipitate formed after 15 min.
The reaction mixture was centrifuged and the solid was collected. The solid
was washed with a solution of diethyl ether/hexane (3 ꢁ 5 mL each, v/v). The
solid was then dissolved in water and lyophilized to afford a white solid (90–
95%). For characterization of one of the dimers, please see Supplementary data.
Complete characterization of all the dimers will be reported elsewhere.
Supplementary data
Supplementary data (general synthesis procedures and charac-
terization of one of the ligand) associated with this article can be