Y. Nakashima and M. Irie, Adv. Mater., 2005, 17, 309–314; (e)
N. Katsonis, M. Lubomska, M. M. Pollard, B. L. Feringa and
P. Rudolf, Prog. Surf. Sci., 2007, 82, 407–434; (f) K. Uchida,
Y. Yamanoi, T. Yonezawa and H. Nishihara, J. Am. Chem. Soc.,
2011, 133, 9239–9241.
3 (a) J. N. Yao, K. Hashimoto and A. Fujishima, Nature, 1992, 355,
624–626; (b) T. Koshido, T. Kawai and K. Yoshino, J. Phys.
Chem., 1995, 99, 6110–6114; (c) A. Peters and N. R. Branda, J. Am.
Chem. Soc., 2003, 125, 3404–3405; (d) Y. Moriyama, K. Matsuda,
N. Tanifuji, S. Irie and M. Irie, Org. Lett., 2005, 7, 3315–3318.
4 U. Al-Atar, R. Fernandes, B. Johnsen, D. Baillie and N. R. Branda, J.
Am. Chem. Soc., 2009, 131, 15966–15967.
electron transfer might also be possible origins of the suppressed
reactivity.
The emission band at 600 nm under excitation at 500 nm
continuously increased with the progressive conversion of 1a to
1b upon UV irradiation in the film (Fig. 8b). The emission
intensity at P.S.S. was completely maintained even after
continuous irradiation at 500 nm for 4 h. The colored film
showed an emission quantum yield of about 15% as also
summarized in Table 4.
Fig. 9 shows a typical example of optical patterns formed on
the amorphous film of 1a by irradiating with UV light (l ¼ 330–
385 nm) through a patterned photomask (Edmund Optics,
quartz test-target 1951 USAF). The irradiated area turned pale
orange in apparent color and emissive in orange. Compound 1
can afford a high contrast optical pattern on the amorphous film
of about 70 nm and its emission intensity is stable for continuous
excitation with visible light, which made it a candidate for future
write-once optical recording medium.
5 (a) S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie,
Nature, 2007, 446, 778–781; (b) M. Morimoto and M. Irie, J. Am.
Chem. Soc., 2010, 132, 14172–14178; (c) S. Kobatake, H. Hasegawa
and K. Miyamura, Cryst. Growth Des., 2011, 11, 1223–1229.
6 (a) J. Guldberg, H. C. Nathanson, D. L. Balthis and A. S. Jensen,
Appl. Phys. Lett., 1975, 26, 391–393; (b) E. Kim, Y.-K. Choi and
M.-H. Lee, Macromolecules, 1999, 32, 4855–4860; (c) H. Nakano,
T. Takahashi, T. Kadota and Y. Shirota, Adv. Mater., 2002, 14,
1157–1160; (d) H. Nakano and T. Tanino, Appl. Phys. Lett., 2005,
87, 061910; (e) T. Tanino, S. Yoshikawa, T. Ujike, D. Nagahama,
K. Moriwaki, T. Takahashi, Y. Kotani, H. Nakano and Y. Shirota,
J. Mater. Chem., 2007, 17, 4953–4963; (f) E. Ishow, R. Camacho-
ꢀ
Aguilera, J. Guerin, A. Brosseau and K. Nakatani, Adv. Funct.
Conclusions
Mater., 2009, 19, 796–804; (g) A. Jacquart, P. Tauc, K. Nakatani
and E. Ishow, J. Mater. Chem., 2009, 19, 8999–9005.
We reported here three novel photochromic compounds 1, 2 and
3 with relatively high fluorescence efficiencies, Fem ¼ 0.34, 0.36,
and 0.036, respectively, in their colored isomers. The extremely
low photo-cycloreversion reactivity (Fco < 10ꢂ4) was found in the
compounds 1 and 3 having phenylthiophene-S,S-dioxide-3-yl
groups, whose photoisomerization reactions are almost
irreversible.
7 (a) H. G. Heller, New Fatigue-Resistant Organic Photochromic
Materials, in Fine Chemicals for the Electronic Industry, ed. P.
Bamfield, Royal Soc. Chem., London, 1986, pp. 120–135; (b)
H. G. Heller and S. J. Oliver, J. Chem. Soc., Perkin Trans. 1, 1981,
197–202.
8 (a) M. Irie and M. Mohri, J. Org. Chem., 1988, 53, 803–808; (b)
S. Nakamura and M. Irie, J. Org. Chem., 1988, 53, 6136–6138.
9 T. Kawai, T. Iseda and M. Irie, Chem. Commun., 2004, 72–73.
10 (a) H. Miyasaka, S. Araki, A. Tabata, T. Nobuto, N. Mataga and
M. Irie, Chem. Phys. Lett., 1994, 230, 249–254; (b) T. Koshido,
T. Kawai and K. Yoshino, Synth. Met., 1995, 73, 257–260; (c)
Y. Kaneuchi, T. Kawai, M. Hamaguchi, K. Yoshino and M. Irie,
Jpn. J. Appl. Phys., 1997, 36, 3736–3739; (d) T. Fukaminato,
S. Kobatake, T. Kawai and M. Irie, Proc. Jpn. Acad., Ser. B, 2001,
77, 30–35; (e) M.-S. Kim, T. Kawai and M. Irie, Chem. Lett., 2001,
702–703; (f) H. Miyasaka, M. Murakami, T. Okada, Y. Nagata,
A. Itaya, S. Kobatake and M. Irie, Chem. Phys. Lett., 2003, 371,
40–48; (g) K. Shibata, L. Kuroki, T. Fukaminato and M. Irie,
Chem. Lett., 2008, 37, 832–833.
The oxidized terarylene 1 forms a stable amorphous state with
relatively high glass transition temperature. Optical formation of
high contrast fluorescent patterning on the bulk amorphous film
was demonstrated, which has substantial stability for continuous
excitation with visible light. Present results demonstrate a char-
acteristic feature of oxidized terarylenes suitable for forming
amorphous materials with clear fluorescence turn-on switching
capability.
After submission of the present manuscript, similar
compounds were independently reported by Prof. Irie and
coworkers, which are based on oxidized diarylethenes having
ethyl groups at the reaction center carbon atoms and also
showing relatively large fluorescence quantum yield in the closed
form.26
11 (a) T. Kawai, T. Sasaki and M. Irie, Chem. Commun., 2001, 711–712;
(b) M. Irie, T. Fukaminato, T. Sasaki, N. Tamai and T. Kawai,
Nature, 2002, 420, 759; (c) T. Fukaminato, T. Sasaki, T. Kawai,
N. Tamai and M. Irie, J. Am. Chem. Soc., 2004, 126, 14843–14849;
(d) Y. Odo, T. Fukaminato and M. Irie, Chem. Lett., 2007, 36, 240–
241.
12 (a) A. J. Myles and N. R. Branda, Adv. Funct. Mater., 2002, 12, 167–
€
173; (b) H. Tian, B. Chen, H. Tu and K. Mullen, Adv. Mater., 2002,
14, 918–923; (c) V. W.-W. Yam, C.-C. Ko and N. Zhu, J. Am. Chem.
Soc., 2004, 126, 12734–12735; (d) T. Nakagawa, K. Atsumi,
T. Nakashima, Y. Hasegawa and T. Kawai, Chem. Lett., 2007, 36,
372–373; (e) T. Nakagawa, Y. Hasegawa and T. Kawai, J. Phys.
Chem. A, 2008, 112, 5096–5103; (f) T. Nakagawa, Y. Hasegawa and
T. Kawai, Chem. Commun., 2009, 5630–5632; (g) W. Tan,
Q. Zhang, J. Zhang and H. Tian, Org. Lett., 2009, 11, 161–164.
13 (a) L.-Y. Zhu, M.-Q. Zhu, J. K. Hurst and A. Q. D. Li, J. Am. Chem.
Soc., 2005, 127, 8968–8970; (b) Z. Zhou, H. Hu, H. Yang, T. Yi,
K. Huang, M. Yu, F. Li and C. Huang, Chem. Commun., 2008,
4786–4788; (c) I. Yildiz and F. M. Raymo, J. Mater. Chem., 2006,
16, 1118–1120.
Acknowledgements
The authors thank Ms Nishikawa, Ms Nishiyama, Mr Asanoma
and Mr Katao in NAIST for their contribution to measurements
of HRMS spectra, X-ray crystal structural analyses and
elemental analyses. This work has been partly supported by
NAIST Advanced Research Network Project and also by The
Green Photonics Project on NAIST.
€
14 J. Karnbratt, M. Hammarson, S. Li, H. L. Anderson, B. Albinsson
ꢀ
References
and J. Andreasson, Angew. Chem., Int. Ed., 2010, 49, 1854–1857.
15 S. Yokojima, T. Kobayashi, K. Shinoda, K. Matsuda,
K. Higashiguchi and S. Nakamura, J. Phys. Chem. B, 2011, 115,
5685–5692.
16 (a) Y.-C. Jeong, S. I. Yang, K.-H. Ahn and E. Kim, Chem. Commun.,
2005, 2503–2505; (b) Y.-C. Jeong, S. I. Yang, E. Kim and K.-H. Ahn,
Tetrahedron, 2006, 5855–5861; (c) Y.-C. Jeong, S. I. Yang, E. Kim
and K.-H. Ahn, Macromol. Rapid Commun., 2006, 1769–1773; (d)
1 (a) M. Irie, Chem. Rev., 2000, 100, 1685–1716; (b) H. Tian and
S. Yang, Chem. Soc. Rev., 2004, 33, 85–97.
2 (a) T. Kawai, T. Koshido and K. Yoshino, Appl. Phys. Lett., 1995, 67,
795–797; (b) M. C. Gallazzi, G. Ridolfi, L. Albertin, C. Bertarelli,
N. Camaioni, G. Casalbore-Miceli and A. M. Fichera, J. Mater.
Chem., 2002, 12, 2202–2207; (c) K. Matsuda and M. Irie, J.
Photochem. Photobiol., C, 2004, 5, 169–182; (d) T. Kawai,
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 17425–17432 | 17431