Journal of Medicinal Chemistry
Article
inhibitors: design, synthesis, and biological characterization. J. Med.
Chem. 2010, 53, 6198−6209.
(31) Inestrosa, N. C.; Alvarez, A.; Perez, C. A.; Moreno, R. D.;
Vicente, M.; Linker, C.; Casanueva, O. I.; Soto, C.; Garrido, J.
Acetylcholinesterase accelerates assembly of amyloid-beta-peptides
into Alzheimer’s fibrils: possible role of the peripheral site of the
enzyme. Neuron 1996, 16, 881−891.
(32) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. beta-
Amyloid aggregation induced by human acetylcholinesterase:
inhibition studies. Biochem. Pharmacol. 2003, 65, 407−416.
(33) Appleyard, M. E.; McDonald, B. Acetylcholinesterase and
butyrylcholinesterase activities in cerebrospinal fluid from different
levels of the neuraxis of patients with dementia of the Alzheimer type.
J. Neurol. Neurosurg. Psychiatry 1992, 55, 1074−1078.
(34) Bartolini, M.; Bertucci, C.; Bolognesi, M. L.; Cavalli, A.;
Melchiorre, C.; Andrisano, V. Insight into the kinetic of amyloid beta
(1−42) peptide self-aggregation: elucidation of inhibitors’ mechanism
of action. ChemBioChem 2007, 8, 2152−2161.
(35) Reinke, A. A.; Ung, P. M. U.; Quintero, J. J.; Carlson, H. A.;
Gestwicki, J. E. Chemical probes that selectively recognize the earliest
Abeta oligomers in complex mixtures. J. Am. Chem. Soc. 2010, 132,
17655−17657.
(36) Convertino, M.; Pellarin, R.; Catto, M.; Carotti, A.; Caflisch, A.
9,10-Anthraquinone hinders beta-aggregation: hHow does a small
molecule interfere with Abeta-peptide amyloid fibrillation? Protein Sci.
2009, 18, 792−800.
(37) Scherzer-Attali, R.; Pellarin, R.; Convertino, M.; Frydman-
Marom, A.; Egoz-Matia, N.; Peled, S.; Levy-Sakin, M.; Shalev, D. E.;
Caflisch, A.; Gazit, E.; Segal, D. Complete phenotypic recovery of an
Alzheimer’s disease model by a quinone−tryptophan hybrid
aggregation inhibitor. PLoS One 2010, 5, e11101.
(38) Ortega, A.; Rincon, A.; Jimenez-Aliaga, K. L.; Bermejo-Bescos,
P.; Martin-Aragon, S.; Molina, M. T.; Csaky, A. G. Synthesis and
evaluation of arylquinones as BACE1 inhibitors, beta-amyloid peptide
aggregation inhibitors, and destabilizers of preformed beta-amyloid
fibrils. Bioorg. Med. Chem. Lett. 2011, 21, 2183−2187.
(39) Turk, B. Targeting proteases: successes, failures and future
prospects. Nat. Rev. Drug Discovery 2006, 5, 785−799.
(13) Pang, Y. P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S.
Highly potent, selective, and low cost bis-tetrahydroaminacrine
inhibitors of acetylcholinesterase. Steps toward novel drugs for
treating Alzheimer’s disease. J. Biol. Chem. 1996, 271, 23646−23649.
(14) Castro, A.; Martinez, A. Peripheral and dual binding site
acetylcholinesterase inhibitors: implications in treatment of
Alzheimer’s disease. Mini-Rev. Med. Chem. 2001, 1, 267−272.
(15) Du, D. M.; Carlier, P. R. Development of bivalent
acetylcholinesterase inhibitors as potential therapeutic drugs for
Alzheimer’s disease. Curr. Pharm. Des. 2004, 10, 3141−3156.
(16) Munoz-Torrero, D.; Camps, P. Dimeric and hybrid anti-
Alzheimer drug candidates. Curr. Med. Chem. 2006, 13, 399−422.
(17) Haviv, H.; Wong, D. M.; Silman, I.; Sussman, J. L. Bivalent
ligands derived from huperzine A as acetylcholinesterase inhibitors.
Curr. Top. Med. Chem. 2007, 7, 375−387.
(18) Bolognesi, M. L.; Minarini, A.; Rosini, M.; Tumiatti, V.;
Melchiorre, C. From dual binding site acetylcholinesterase inhibitors
to multi-target-directed ligands (MTDLs): a step forward in the
treatment of Alzheimer’s disease. Mini-Rev. Med. Chem. 2008, 8, 960−
967.
(19) Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to
designed multiple ligands. Drug Discovery Today 2004, 9, 641−651.
(20) Bartolini, M.; Andrisano, V. Strategies for the inhibition of
protein aggregation in human diseases. ChemBioChem 2010, 11,
1018−1035.
(21) Reinke, A. A.; Gestwicki, J. E. Insight into amyloid structure
using chemical probes. Chem. Biol. Drug Des. 2011, 77, 399−411.
(22) Bolognesi, M. L.; Bartolini, M.; Mancini, F.; Chiriano, G.;
Ceccarini, L.; Rosini, M.; Milelli, A.; Tumiatti, V.; Andrisano, V.;
Melchiorre, C. Bis(7)-tacrine derivatives as multitarget-directed
ligands: focus on anticholinesterase and antiamyloid activities.
ChemMedChem 2010, 5, 1215−1220.
(23) Capsoni, S.; Andrisano, V.; Bartolini, M.; Bolognesi, M. L.;
Cavalli, A.; Margotti, E.; Melchiorre, C.; Recanatini, M.; Cattaneo, A.
S4-04-04 memoquin, a novel multifunctional compound for
Alzheimer’s disease: an up-date on preclinical studies. Alzheimer’s
Dementia 2006, 2, S73−S74.
(24) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46, 3−26.
(25) Forloni, G.; Colombo, L.; Girola, L.; Tagliavini, F.; Salmona, M.
Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett.
2001, 487, 404−407.
(26) Bermejo-Bescos, P.; Martin-Aragon, S.; Jimenez-Aliaga, K. L.;
Ortega, A.; Molina, M. T.; Buxaderas, E.; Orellana, G.; Csaky, A. G. In
vitro antiamyloidogenic properties of 1,4-naphthoquinones. Biochem.
Biophys. Res. Commun. 2010, 400, 169−174.
(40) Czvitkovich, S.; Duller, S.; Mathiesen, E.; Lorenzoni, K.;
Imbimbo, B. P.; Hutter-Paier, B.; Windisch, M.; Wronski, R.
Comparison of pharmacological modulation of APP metabolism in
primary chicken telencephalic neurons and in a human neuroglioma
cell line. J. Mol. Neurosci. 2011, 43, 257−267.
(41) Morphy, R.; Rankovic, Z. Fragments, network biology and
designing multiple ligands. Drug Discovery Today 2007, 12, 156−160.
(42) Rizzo, S.; Riviere, C.; Piazzi, L.; Bisi, A.; Gobbi, S.; Bartolini, M.;
Andrisano, V.; Morroni, F.; Tarozzi, A.; Monti, J. P.; Rampa, A.
Benzofuran-based hybrid compounds for the inhibition of
cholinesterase activity, beta amyloid aggregation, and abeta
neurotoxicity. J. Med. Chem. 2008, 51, 2883−2886.
(27) Bolognesi, M. L.; Bartolini, M.; Tarozzi, A.; Morroni, F.; Lizzi,
F.; Milelli, A.; Minarini, A.; Rosini, M.; Hrelia, P.; Andrisano, V.;
Melchiorre, C. Multitargeted drugs discovery: balancing anti-amyloid
and anticholinesterase capacity in a single chemical entity. Bioorg. Med.
Chem. Lett. 2011, 21, 2655−2658.
(28) Bolognesi, M. L.; Calonghi, N.; Mangano, C.; Masotti, L.;
Melchiorre, C. Parallel synthesis and cytotoxicity evaluation of a
polyamine−quinone conjugates library. J. Med. Chem. 2008, 51, 5463−
5467.
(29) Fryatt, T.; Pettersson, H. I.; Gardipee, W. T.; Bray, K. C.; Green,
S. J.; Slawin, A. M. Z.; Beall, H. D.; Moody, C. J. Novel
quinolinequinone antitumor agents: structure−metabolism studies
with NAD(P)H:quinone oxidoreductase (NQO1). Bioorg. Med. Chem.
2004, 12, 1667−1687.
(30) Bolognesi, M. L.; Cavalli, A.; Bergamini, C.; Fato, R.; Lenaz, G.;
Rosini, M.; Bartolini, M.; Andrisano, V.; Melchiorre, C. Toward a
rational design of multitarget-directed antioxidants: merging
memoquin and lipoic acid molecular frameworks. J. Med. Chem.
2009, 52, 7883−7886.
8304
dx.doi.org/10.1021/jm200691d | J. Med. Chem. 2011, 54, 8299−8304